Solving the Boltzmann Equation

This page solves the Boltzmann equation for the dark matter comoving number density and relic density. $$ \frac{dY}{dx} = -\sqrt{\frac{\pi}{45}}\frac{m_{\chi}M_{pl}}{x^2}g_{*}^{1/2}\langle\sigma v\rangle \left(Y^2-Y_{\mathrm{eq}}^{2}\right) $$ where: $$ \begin{align} Y &= n_{\chi} / s, & x &= m_{\chi} / T, & \langle\sigma v\rangle &\sim \langle\sigma v\rangle_{0} x^{-n} \end{align} $$

Glossary

  • \(m_{\chi}\): Dark Matter mass
  • \(\langle\sigma v\rangle_{0}\): Leading-order coefficient of the thermally averaged annihilation cross section
  • \(n\): Leading-order power in \(x\) of the thermally averaged annihilation cross section
  • \(T\): Temperature of the Standard Model bath
  • \(x\): Scaleless temperature (Dark Matter mass divided by Standard Model temperature)
  • \(Y\): Comoving number density (number density \(n_{\chi}\) divided by Standard Model entropy density \(s\))
  • \(Y_{\mathrm{eq}}\): Equilibrium value of \(Y\)
  • \(M_{\mathrm{pl}}\): Plank mass (taken to be \(1.220910 \times 10^{19}\))

Use the input boxes below to changes the parameter values.

\(m_{\chi} \ [\mathrm{GeV}]\)
\(\langle\sigma v\rangle_{0} \ [\mathrm{GeV}^{-2}]\)
n
Start \(\ x = m_{\chi}/T\)
End \(\ x = m_{\chi}/T\)

Solution