Probing New Physics with MeV Telescopes

Logan A. Morrison

University of California, Santa Cruz

loanmorr@ucsc.edu

December 8, 2021

Logan A. Morrison (UCSC)

Thesis Defense

- E - E December 8, 2021 1/67

5900

Preview

- Dark matter with $m_{\chi} < \text{GeV}$ is an exciting prospect
- Exciting upcoming MeV γ -ray telescopes could probe the dark sector to unprecedented sensitivity
- New tools developed explicity for studying MeV physics

イロト (四) (三) (三) (三) (0)

Preview

Overview

1 Motivation

- 2 MeV Dark Matter
- 3 Primordial Black Holes
- 4 Future Work

Logan A. Morrison (UCSC)

Thesis Defense

Why MeV Dark Matter?

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 4 / 67

I For decades, WIMPs have been the de facto DM candidates

500

- I For decades, WIMPs have been the de facto DM candidates
 - Naturally produce DM with correct relic density via freeze-out

$$\frac{\Omega_{\chi}h^2}{0.12} \sim \left(\frac{2 \times 10^{-9} \text{GeV}^{-2}}{\langle \sigma v \rangle}\right) \left(\frac{80}{g_{\star}}\right)^{1/2} \left(\frac{x_f}{23}\right)$$

200

- (1) For decades, WIMPs have been the de facto DM candidates
 - **(1)** Naturally produce DM with correct relic density via freeze-out

Logan A. Morrison (UCSC)

Thesis Defense

- I For decades, WIMPs have been the de facto DM candidates
 - Natuarally produce DM with correct relic density via freeze-out
 - ② Expect new physics at EW scale (e.g. Natuaralness + Hierarchy Problem)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- I For decades, WIMPs have been the de facto DM candidates
 - **(1)** Natuarally produce DM with correct relic density via freeze-out
 - Expect new physics at EW scale (e.g. Natuaralness + Hierarchy Problem)
 - Models with NP at EW scale often accommodate EW scale DM candidate (e.g. MSSM)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- I For decades, WIMPs have been the de facto DM candidates
 - Natuarally produce DM with correct relic density via freeze-out
 - Expect new physics at EW scale (e.g. Natuaralness + Hierarchy Problem)
 - Models with NP at EW scale often accommodate EW scale DM candidate (e.g. MSSM)
- **2** No evidence for WIMPs

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 5 / 67

- I For decades, WIMPs have been the de facto DM candidates
 - Natuarally produce DM with correct relic density via freeze-out
 - Expect new physics at EW scale (e.g. Natuaralness + Hierarchy Problem)
 - Models with NP at EW scale often accommodate EW scale DM candidate (e.g. MSSM)
- ② No evidence for WIMPs
- ③ Experiments are putting tight constraints on WIMP models

Logan A. Morrison (UCSC)

December 8, 2021 6/67

Logan A. Morrison (UCSC)

Thesis Defense

Alternative to WIMPs: MeV DM

1 No WIMPs \implies Explore different mass ranges/mediators

Logan A. Morrison (UCSC)

Thesis Defense

イロト イ団ト イヨト イヨト ヨー つへで December 8, 2021 7 / 67

Alternative to WIMPs: MeV DM

- $\textcircled{0} No WIMPs \implies Explore different mass ranges/mediators$
- 2 MeV masses much less constrained by current direct and indirect detection experiments

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Alternative to WIMPs: MeV DM

- **(1)** No WIMPs \implies Explore different mass ranges/mediators
- 2 MeV masses much less constrained by current direct and indirect detection experiments
- ③ Exciting upcoming oppurtunities to probe MeV DM via indirect detection: AS-Astrogam, AMEGO, GECCO

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 7 / 67

Sac

イロト イボト イヨト イヨト 三日

GECCO

December 8, 2021 7 / 67

DQC

(日) (四) (王) (王) (王)

GECCO Sensitivity

Logan A. Morrison (UCSC)

Thesis Defense

A. Coogan, S. Profumo, LM: arXiv:1907.11846

A. Coogan, S. Profumo, LM: arXiv:2104.06168

A. Coogan, A. Moiseev, S. Profumo, LM: arXiv:2101.10370

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 8 / 67

• Dark Matter models with:

Annihilating-DM : 0.1 MeV $\lesssim m_{\chi} \lesssim 250$ MeV Decaying-DM : 0.1 MeV $\lesssim m_{\chi} \lesssim 500$ MeV

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 9 / 67

• Dark Matter models with:

Annihilating-DM : 0.1 MeV $\lesssim m_{\chi} \lesssim 250$ MeV Decaying-DM : 0.1 MeV $\lesssim m_{\chi} \lesssim 500$ MeV

(more on this later)

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 9 / 67

イロト (四) (三) (三) (三) (0)

• Dark Matter models with:

Annihilating-DM : 0.1 MeV $\lesssim m_{\chi} \lesssim 250$ MeV Decaying-DM : 0.1 MeV $\lesssim m_{\chi} \lesssim 500$ MeV

• Use simplified models with a new mediator connecting DM to SM

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 9 / 67

イロト (四) (三) (三) (三) (0)

• Dark Matter models with:

Annihilating-DM : 0.1 MeV $\lesssim m_{\chi} \lesssim 250$ MeV Decaying-DM : 0.1 MeV $\lesssim m_{\chi} \lesssim 500$ MeV

- Use simplified models with a new mediator connecting DM to SM
- Compute realistic spectra and branching fractions by matching quark interactions onto the chiral Lagrangian

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 9 / 67

• Dark Matter models with:

Annihilating-DM : 0.1 MeV $\lesssim m_{\chi} \lesssim 250$ MeV Decaying-DM : 0.1 MeV $\lesssim m_{\chi} \lesssim 500$ MeV

- Use simplified models with a new mediator connecting DM to SM
- Compute realistic spectra and branching fractions by matching quark interactions onto the chiral Lagrangian
- Developed public, open-source python package for comprehensive analysis of MeV DM models

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 9 / 67

イロト イヨト イヨト イヨト ニヨー つくで

Thesis Defense

• Large set of simplified models:

Logan A. Morrison (UCSC)

Thesis Defense

イロト イ団ト イヨト イヨト ヨー のへで December 8, 2021 10 / 67

- Large set of simplified models:
 - ▶ Scalar mediator: General MFV, Higgs-portal, heavy quark

Thesis Defense

 $\langle \Box \rangle \land \Box \rangle \land \Box \rangle \land \Box$ ∃ ⊳ December 8, 2021 10/67

-

- Large set of simplified models:
 - ▶ Scalar mediator: General MFV, Higgs-portal, heavy quark
 - ▶ Vector mediator: General couplings to light-quarks/leptons, kinetic-mixing, quark-only, GeV-Scale DM (coming-soon)

Thesis Defense

∃ ⊳ December 8, 2021 10/67

- Large set of simplified models:
 - ▶ Scalar mediator: General MFV, Higgs-portal, heavy quark
 - ► Vector mediator: General couplings to light-quarks/leptons, kinetic-mixing, quark-only, GeV-Scale DM (coming-soon)
 - ▶ RH-neutrino, PBH & facilities for creating new models

Thesis Defense

- Large set of simplified models:
 - ▶ Scalar mediator: General MFV, Higgs-portal, heavy quark
 - ► Vector mediator: General couplings to light-quarks/leptons, kinetic-mixing, quark-only, GeV-Scale DM (coming-soon)
 - ▶ RH-neutrino, PBH & facilities for creating new models
- Computes branching fractions, partial widths, relic densities, etc.

Thesis Defense

- Large set of simplified models:
 - ▶ Scalar mediator: General MFV, Higgs-portal, heavy quark
 - ► Vector mediator: General couplings to light-quarks/leptons, kinetic-mixing, quark-only, GeV-Scale DM (coming-soon)
 - ▶ RH-neutrino, PBH & facilities for creating new models
- Computes branching fractions, partial widths, relic densities, etc.
- Photon and positron spectra (neutrino spectra coming soon)

- Large set of simplified models:
 - ▶ Scalar mediator: General MFV, Higgs-portal, heavy quark
 - ► Vector mediator: General couplings to light-quarks/leptons, kinetic-mixing, quark-only, GeV-Scale DM (coming-soon)
 - ▶ RH-neutrino, PBH & facilities for creating new models
- Computes branching fractions, partial widths, relic densities, etc.
- Photon and positron spectra (neutrino spectra coming soon)
- Constrainers for popular MeV telescopes: COMPTEL, EGRET, Fermi, INTEGRAL, ADEPT, AMEGO, MAST, PANGU, AS-Astrogam, GECCO (easy to implement new ones)

Thesis Defense

December 8, 2021 10 / 67

イロト イボト イヨト イヨト

- Large set of simplified models:
 - ▶ Scalar mediator: General MFV, Higgs-portal, heavy quark
 - ► Vector mediator: General couplings to light-quarks/leptons, kinetic-mixing, quark-only, GeV-Scale DM (coming-soon)
 - ▶ RH-neutrino, PBH & facilities for creating new models
- Computes branching fractions, partial widths, relic densities, etc.
- Photon and positron spectra (neutrino spectra coming soon)
- Constrainers for popular MeV telescopes: COMPTEL, EGRET, Fermi, INTEGRAL, ADEPT, AMEGO, MAST, PANGU, AS-Astrogam, GECCO (easy to implement new ones)
- Facilities to compute constraints from CMB and various PHENO constraints

Thesis Defense

Simplified Models

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 11/67

Models: $\mu \gtrsim \text{GeV}$

• Dark Matter: $[SU(3)_c \times SU(2)_L \times U(1)_Y]$ -Neutral Dirac Fermion

$$\mathcal{L}_{\chi} = i\bar{\chi}(\gamma^{\mu}\partial_{\mu} - m_{\chi})\chi$$

Logan A. Morrison (UCSC)

Thesis Defense

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 1 □ √ 0 0 December 8, 2021 12 / 67
Models: $\mu \gtrsim \text{GeV}$

• Dark Matter: $[SU(3)_c \times SU(2)_L \times U(1)_Y]$ -Neutral Dirac Fermion

$$\mathcal{L}_{\chi} = i\bar{\chi}(\gamma^{\mu}\partial_{\mu} - m_{\chi})\chi$$

• Give portal to SM via a new mediator

$$\mathcal{L}_{\chi(\text{int})} \supset \begin{cases} g_{S\chi} S \bar{\chi} \chi & \text{Scalar Mediator} \\ i g_{P\chi} P \bar{\chi} \gamma^5 \chi & \text{Pseudo-Scalar Mediator} \\ g_{V\chi} V_{\mu} \bar{\chi} \gamma^{\mu} \chi & \text{Vector Mediator} \\ g_{A\chi} A_{\mu} \bar{\chi} \gamma^{\mu} \gamma^5 \chi & \text{Axial-Vector Mediator} \end{cases}$$

Logan A. Morrison (UCSC)

Thesis Defense

Models: $\mu \gtrsim \text{GeV}$ • Dark Matter: $[SU(3)_c \times SU(2)_L \times U(1)_Y]$ -Neutral Dirac Fermion

$$\mathcal{L}_{\chi} = i\bar{\chi}(\gamma^{\mu}\partial_{\mu} - m_{\chi})\chi$$

• Give portal to SM via a new mediator

$$\mathcal{L}_{\chi(\text{int})} \supset \begin{cases} g_{S\chi} S \bar{\chi} \chi & \text{Scalar Mediator} \\ i g_{P\chi} P \bar{\chi} \gamma^5 \chi & \text{Pseudo-Scalar Mediator} \\ g_{V\chi} V_{\mu} \bar{\chi} \gamma^{\mu} \chi & \text{Vector Mediator} \\ g_{A\chi} A_{\mu} \bar{\chi} \gamma^{\mu} \gamma^5 \chi & \text{Axial-Vector Mediator} \end{cases}$$

• Focus on scalar and vector mediator cases

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 12/67

イロト (四) (三) (三) (三) (0)

Models: $\mu \gtrsim \text{GeV}$

• Dark Matter: $[SU(3)_c \times SU(2)_L \times U(1)_Y]$ -Neutral Dirac Fermion

$$\mathcal{L}_{\chi} = i\bar{\chi}(\gamma^{\mu}\partial_{\mu} - m_{\chi})\chi$$

• Give portal to SM via a new mediator

$$\mathcal{L}_{\chi(\text{int})} \supset \begin{cases} g_{S\chi} S \bar{\chi} \chi & \text{Scalar Mediator} \\ i g_{P\chi} P \bar{\chi} \gamma^5 \chi & \text{Pseudo-Scalar Mediator} \\ g_{V\chi} V_{\mu} \bar{\chi} \gamma^{\mu} \chi & \text{Vector Mediator} \\ g_{A\chi} A_{\mu} \bar{\chi} \gamma^{\mu} \gamma^5 \chi & \text{Axial-Vector Mediator} \end{cases}$$

• Focus on scalar and vector mediator cases

• Also consider RH-neutrino with mixing with a single SM neutrino

$$\begin{pmatrix} \hat{\nu}_k \\ \hat{\bar{\nu}} \end{pmatrix} = \begin{pmatrix} -i\cos\theta & \sin\theta \\ i\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_k \\ \bar{\nu} \end{pmatrix}$$

Logan A. Morrison (UCSC)

December 8, 2021 12 / 67

イロト イヨト イヨト イヨト ニヨー つくで

• Add ${\rm SU}(3)_c \otimes {\rm SU}(2)_L \otimes {\rm U}(1)_Y$ singlet, scalar mediator S with mass m_S

- Add ${\rm SU}(3)_c \otimes {\rm SU}(2)_L \otimes {\rm U}(1)_Y$ singlet, scalar mediator S with mass m_S
- Assume $\langle S \rangle$ sufficiently small

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 13 / 67

- Add $\mathrm{SU}(3)_c \otimes \mathrm{SU}(2)_L \otimes \mathrm{U}(1)_Y$ singlet, scalar mediator S with mass m_S
- Assume $\langle S \rangle$ sufficiently small
- Couple to fermions via diagonal interactions (avoid tree-level FCNC): $y_{ij}S\bar{f}_if_j$ with $y = \text{diag}(\cdots)$

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 13 / 67

- Add $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$ singlet, scalar mediator S with mass m_S
- Assume $\langle S \rangle$ sufficiently small
- Couple to fermions via diagonal interactions (avoid tree-level FCNC): $y_{ij}S\bar{f}_if_j$ with $y = \text{diag}(\cdots)$
- Include common dimension 5 operators from integrating out heavy fields: $SF_{\mu\nu}F^{\mu\nu}$ and $SG^a_{\mu\nu}G^{\mu\nu,a}$

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 13 / 67

イロト (四) (三) (三) (三) (0)

- Add ${\rm SU}(3)_c \otimes {\rm SU}(2)_L \otimes {\rm U}(1)_Y$ singlet, scalar mediator S with mass m_S
- Assume $\langle S \rangle$ sufficiently small
- Couple to fermions via diagonal interactions (avoid tree-level FCNC): $y_{ij}S\bar{f}_if_j$ with $y = \text{diag}(\cdots)$
- Include common dimension 5 operators from integrating out heavy fields: $SF_{\mu\nu}F^{\mu\nu}$ and $SG^a_{\mu\nu}G^{\mu\nu,a}$

Logan A. Morrison (UCSC)

Thesis Defense

 □
 →
 ≥
 →
 >
 ≥

- Add $\mathrm{SU}(3)_c \otimes \mathrm{SU}(2)_L \otimes \mathrm{U}(1)_Y$ singlet, scalar mediator S with mass m_S
- Assume $\langle S \rangle$ sufficiently small
- Couple to fermions via diagonal interactions (avoid tree-level FCNC): $y_{ij}S\bar{f}_if_j$ with $y = \text{diag}(\cdots)$
- Include common dimension 5 operators from integrating out heavy fields: $SF_{\mu\nu}F^{\mu\nu}$ and $SG^a_{\mu\nu}G^{\mu\nu,a}$

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\chi} - \frac{1}{2} (\partial_{\mu}S)^2 - V(S) - g_{S\chi}S\bar{\chi}\chi$$
$$- S\sum_{f} g_{Sf}\bar{f}f + \frac{S}{\Lambda} \left(g_{SF}\frac{\alpha_{\rm EM}}{4\pi}F_{\mu\nu}F^{\mu\nu} + g_{SG}\frac{\alpha_s}{4\pi}G^a_{\mu\nu}G^{\mu\nu,a}\right)$$

Logan A. Morrison (UCSC)

Thesis Defense

Higgs Portal: $\mu \gtrsim \text{GeV}$

• Assume the scalar mediator mixes with SM Higgs

$$\begin{pmatrix} \hat{h} \\ \hat{S} \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} h \\ S \end{pmatrix}$$

Logan A. Morrison (UCSC)

December 8, 2021 14/67

Higgs Portal: $\mu \gtrsim \text{GeV}$

• Assume the scalar mediator mixes with SM Higgs

$$\hat{h} = \cos\theta h - \sin\theta S$$

 ${\ \bullet \ }$ Induces interactions between SM and S

$$-\frac{h}{v_h}\sum_{\psi}m_{\psi}\bar{\psi}\psi+\cdots\rightarrow-\sin\theta\frac{S}{v_h}\sum_{\psi}m_{\psi}\bar{\psi}\psi+\cdots$$

Higgs Portal: $\mu \gtrsim \text{GeV}$

• Assume the scalar mediator mixes with SM Higgs

$$\hat{h} = \cos\theta h - \sin\theta S$$

 ${\, \bullet \,}$ Induces interactions between SM and S

$$-\frac{h}{v_h}\sum_{\psi}m_{\psi}\bar{\psi}\psi+\cdots\rightarrow-\sin\theta\frac{S}{v_h}\sum_{\psi}m_{\psi}\bar{\psi}\psi+\cdots$$

• Resulting scalar Lagrangian with dimension-5 operators for $\mu\gtrsim~{\rm GeV}$

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\chi} - \frac{1}{2} (\partial_{\mu} S)^2 - V(S) - g_{S\chi} S \bar{\chi} \chi$$
$$- S \sum_{f} g_{Sf} \bar{f} f + \frac{S}{\Lambda} \left(g_{SF} \frac{\alpha_{\rm EM}}{4\pi} F_{\mu\nu} F^{\mu\nu} + g_{SG} \frac{\alpha_s}{4\pi} G^a_{\mu\nu} G^{\mu\nu,a} \right)$$

$$g_{Sf} = \frac{m_f}{v_h} \sin \theta, \quad g_{SF} = \frac{5}{6} \sin \theta, \quad g_{SG} = -3 \sin \theta, \quad \Lambda = v_h$$

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 14 / 67

Vector Mediator: $\mu \gtrsim \text{GeV}$

• Add massive U(1) vector V_{μ} via Stueckelberg (or SSB):

$$-\frac{1}{4}V_{\mu\nu}V^{\mu\nu} + \frac{1}{2}(\partial_{\mu}\sigma + m_{V}V_{\mu})^{2} - \frac{1}{2\xi}(\partial_{\mu}V^{\mu} - \xi m\sigma)^{2}$$
$$\longrightarrow \frac{1}{2}V_{\mu}\left[\left(\Box + m_{V}^{2}\right)g^{\mu\nu} - \left(1 - \frac{1}{\xi}\right)\partial^{\mu}\partial^{\nu}\right]V_{\nu} + \cdots$$

December 8, 2021 15 / 67

Vector Mediator: $\mu \gtrsim \text{GeV}$

• Add massive U(1) vector V_{μ} via Stueckelberg (or SSB):

$$-\frac{1}{4}V_{\mu\nu}V^{\mu\nu} + \frac{1}{2}(\partial_{\mu}\sigma + m_{V}V_{\mu})^{2} - \frac{1}{2\xi}(\partial_{\mu}V^{\mu} - \xi m\sigma)^{2}$$
$$\longrightarrow \frac{1}{2}V_{\mu}\left[\left(\Box + m_{V}^{2}\right)g^{\mu\nu} - \left(1 - \frac{1}{\xi}\right)\partial^{\mu}\partial^{\nu}\right]V_{\nu} + \cdots$$

• Charge SM and DM:

$$\mathcal{L} \supset V_{\mu}g_{V\chi}V_{\mu}\bar{\chi}\gamma^{\mu}\chi + \sum_{f}g_{Vf}V_{\mu}\bar{f}\gamma^{\mu}f$$

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 15 / 67

Vector Mediator: $\mu \gtrsim \text{GeV}$

• Add massive U(1) vector V_{μ} via Stueckelberg (or SSB):

$$-\frac{1}{4}V_{\mu\nu}V^{\mu\nu} + \frac{1}{2}(\partial_{\mu}\sigma + m_{V}V_{\mu})^{2} - \frac{1}{2\xi}(\partial_{\mu}V^{\mu} - \xi m\sigma)^{2}$$
$$\longrightarrow \frac{1}{2}V_{\mu}\left[\left(\Box + m_{V}^{2}\right)g^{\mu\nu} - \left(1 - \frac{1}{\xi}\right)\partial^{\mu}\partial^{\nu}\right]V_{\nu} + \cdots$$

• Charge SM and DM:

$$\mathcal{L} \supset V_{\mu}g_{V\chi}V_{\mu}\bar{\chi}\gamma^{\mu}\chi + \sum_{f}g_{Vf}V_{\mu}\bar{f}\gamma^{\mu}f$$

• Vector Lagrangian for $\mu \gtrsim \text{ GeV}$

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\chi} + \frac{1}{2} V_{\mu} \Big[\Big(\Box + m_V^2 \Big) g^{\mu\nu} - \partial^{\mu} \partial^{\nu} \Big] V_{\nu} + g_{V\chi} V_{\mu} \bar{\chi} \gamma^{\mu} \chi + \sum_f g_{Vf} V_{\mu} \bar{f} \gamma^{\mu} f$$

Logan A. Morrison (UCSC)

Thesis Defense

• Introduce small mixing between new vector and SM photon

$$\mathcal{L} \supset -\frac{\epsilon}{2} F_{\mu\nu} V^{\mu\nu}$$

• Introduce small mixing between new vector and SM photon

$$\mathcal{L} \supset -\frac{\epsilon}{2} F_{\mu\nu} V^{\mu\nu}$$

• Eliminate mixing at $\mathcal{O}(\epsilon^2)$ by redefinition of photon field: $A_\mu \to A_\mu - \epsilon V_\mu$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Introduce small mixing between new vector and SM photon

$$\mathcal{L} \supset -\frac{\epsilon}{2} F_{\mu\nu} V^{\mu\nu}$$

- Eliminate mixing at $\mathcal{O}(\epsilon^2)$ by redefinition of photon field: $A_\mu \to A_\mu - \epsilon V_\mu$
- $\, \bullet \,$ Induces coupling between charged SM fields and V_{μ}

$$eQA_{\mu}\bar{\psi}\gamma^{\mu}\psi \rightarrow -e\epsilon QV_{\mu}\bar{\psi}\gamma^{\mu}\psi + \cdots$$

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 16 / 67

イロト イヨト イヨト イヨト ニヨー つくで

• Introduce small mixing between new vector and SM photon

$$\mathcal{L} \supset -\frac{\epsilon}{2} F_{\mu\nu} V^{\mu\nu}$$

- Eliminate mixing at $\mathcal{O}(\epsilon^2)$ by redefinition of photon field: $A_{\mu} \rightarrow A_{\mu} - \epsilon V_{\mu}$
- Induces coupling between charged SM fields and V_{μ} $eQA_{\mu}\bar{\psi}\gamma^{\mu}\psi \rightarrow -e\epsilon QV_{\mu}\bar{\psi}\gamma^{\mu}\psi + \cdots$

 ${\scriptstyle \bullet}$ Result

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\chi} + \frac{1}{2} V_{\mu} \Big[\Big(\Box + m_V^2 \Big) g^{\mu\nu} - \partial^{\mu} \partial^{\nu} \Big] V_{\nu} + g_{V\chi} V_{\mu} \bar{\chi} \gamma^{\mu} \chi + \sum_f g_{Vf} V_{\mu} \bar{f} \gamma^{\mu} f$$

$$g_{Vf} = -\epsilon e Q_f$$

Logan A. Morrison (UCSC)

Thesis Defense

 $\bullet\,$ Assume RH-Neutrino mixes with a single active neutrino: ν_k

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

- $\bullet\,$ Assume RH-Neutrino mixes with a single active neutrino: ν_k
- Low-energy Lagrangian just 4-Fermi Lagrangian

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 17 / 67

- Assume RH-Neutrino mixes with a single active neutrino: ν_k
- Low-energy Lagrangian just 4-Fermi Lagrangian

$$\mathcal{L}_{\bar{\nu}(int)} = -\frac{4G_F}{\sqrt{2}} \left[J^+_{\mu} J^-_{\mu} + J^Z_{\mu} J^Z_{\mu} \right] \Big|_{\nu_k \to \sin \theta \bar{\nu} - i \cos \theta \nu_k}$$

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 17 / 67

- \bullet Assume RH-Neutrino mixes with a single active neutrino: ν_k
- Low-energy Lagrangian just 4-Fermi Lagrangian

$$\mathcal{L}_{\bar{\nu}(int)} = -\frac{4G_F}{\sqrt{2}} \left[J^+_{\mu} J^-_{\mu} + J^Z_{\mu} J^Z_{\mu} \right] \Big|_{\nu_k \to \sin \theta \bar{\nu} - i \cos \theta \nu_k}$$

Charged Currents:

$$J^+_{\mu} = \sum_i \nu_i^{\dagger} \bar{\sigma}_{\mu} \ell_i + \sum_{i,j} V^{\text{CKM}}_{ij} u_i^{\dagger} \bar{\sigma}_{\mu} d_j$$

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 17 / 67

- Assume RH-Neutrino mixes with a single active neutrino: ν_k
- Low-energy Lagrangian just 4-Fermi Lagrangian

$$\mathcal{L}_{\bar{\nu}(int)} = -\frac{4G_F}{\sqrt{2}} \left[J_{\mu}^+ J_{\mu}^- + J_{\mu}^Z J_{\mu}^Z \right] \Big|_{\nu_k \to \sin \theta \bar{\nu} - i \cos \theta \nu_k}$$

Neutral Currents:

$$\begin{aligned} J_{\mu}^{Z} &= \frac{1}{c_{W}} \sum_{f} g_{f,L}^{Z} f^{\dagger} \bar{\sigma}_{\mu} f + \frac{1}{c_{W}} \sum_{\bar{f}} g_{f,R}^{Z} \bar{f}^{\dagger} \bar{\sigma}_{\mu} \bar{f} \\ g_{f,L}^{Z} &= T_{f}^{3} - Q_{f} s_{W}^{2} \\ g_{f,R}^{Z} &= -Q_{f} s_{W}^{2} \end{aligned}$$

Logan A. Morrison (UCSC)

December 8, 2021 17/67

Decent to MeV Scale

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 18 / 67

Moving below 1 GeV

Now that we have the Lagrangians above 1 GeV, we need to determine the Lagrangians below 1 GeV

 $\mathcal{L}_{\mu>1 \mathrm{GeV}}$

 $\mathcal{L}_{\mu < 1 GeV} \sim \mathcal{L}_{ChiPT}$

Logan A. Morrison (UCSC)

Thesis Defense

Moving below 1 GeV $\,$

Logan A. Morrison (UCSC)

Thesis Defense

Moving below 1 GeV $\,$

• Below confinement scale no quarks - D.O.F. are pions, kaons etc.

$$\begin{array}{c}
E \\
u_{L,R}, d_{L,R}, s_{L,R} \quad \mathbf{3} \otimes \overline{\mathbf{3}} \\
\pi^{0}, \pi^{\pm}, K^{0}, \overline{K^{0}}, K^{\pm}, \eta, \eta' \\
\mathbf{8} \oplus \mathbf{1}
\end{array}$$

Logan A. Morrison (UCSC)

Thesis Defense

Moving below 1 GeV

• Below confinement scale no quarks - D.O.F. are pions, kaons etc.

$$\begin{array}{c}
E \\
u_{L,R}, d_{L,R}, s_{L,R} & \mathbf{3} \otimes \overline{\mathbf{3}} \\
\pi^{0}, \pi^{\pm}, K^{0}, \overline{K^{0}}, K^{\pm}, \eta, \eta' \\
\mathbf{8} \oplus \mathbf{1}
\end{array}$$

• Use an effective Lagrangian below 1 GeV : Chiral Lagrangian

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 19/67

San

• Need Lagrangian to describe pions, kaons, ect.

Logan A. Morrison (UCSC)

Thesis Defense

◆□ ▶ ◆ ● ▶ ◆ ● ▶ ● ● ◇ ○ ○
 December 8, 2021 20 / 67

- Need Lagrangian to describe pions, kaons, ect.
- $\bullet\,$ Need low-energy Lagrangian describing pions, etc. to obey the symmetries of $\mathcal{L}_{\rm QCD}^{\rm light}$

$$\mathcal{L}_{\text{QCD}}^{\text{light}} \supset \boldsymbol{q}^{\dagger} \bar{\sigma}_{\mu} D^{\mu} \boldsymbol{q} + \bar{\boldsymbol{q}}^{\dagger} \bar{\sigma}_{\mu} D^{\mu} \bar{\boldsymbol{q}} + \cdots$$

200

イロト イポト イヨト イヨト 二日

- Need Lagrangian to describe pions, kaons, ect.
- Need low-energy Lagrangian describing pions, etc. to obey the symmetries of $\mathcal{L}_{\text{OCD}}^{\text{light}}$

$$\mathcal{L}_{\text{QCD}}^{\text{light}} \supset \boldsymbol{q}^{\dagger} \bar{\sigma}_{\mu} D^{\mu} \boldsymbol{q} + \bar{\boldsymbol{q}}^{\dagger} \bar{\sigma}_{\mu} D^{\mu} \bar{\boldsymbol{q}} + \cdots$$

• Symmetric under global $SU(3)_L \otimes SU(3)_R$ symmetry in chiral limit

$$\boldsymbol{q} \equiv \begin{pmatrix} u \\ d \\ s \end{pmatrix} \to e^{i\theta_L^a \lambda^a/2} \begin{pmatrix} u \\ d \\ s \end{pmatrix} \qquad \bar{\boldsymbol{q}} \equiv \begin{pmatrix} \bar{u} \\ \bar{d} \\ \bar{s} \end{pmatrix} \to e^{i\theta_R^a \lambda^a/2} \begin{pmatrix} \bar{u} \\ \bar{d} \\ \bar{s} \end{pmatrix}$$

NOR

イロト イポト イヨト イヨト 二日

- Need Lagrangian to describe pions, kaons, ect.
- Need low-energy Lagrangian describing pions, etc. to obey the symmetries of $\mathcal{L}_{\rm QCD}^{\rm light}$

$$\mathcal{L}_{
m QCD}^{
m light} \supset oldsymbol{q}^{\dagger} ar{\sigma}_{\mu} D^{\mu} oldsymbol{q} + ar{oldsymbol{q}}^{\dagger} ar{\sigma}_{\mu} D^{\mu} ar{oldsymbol{q}} + \cdots$$

- Symmetric under global $SU(3)_L \otimes SU(3)_R$ symmetry in chiral limit
- Symmetry is broken by chiral condensate: $SU(3)_L \otimes SU(3)_R \rightarrow SU(3)_V$

$$\left\langle oldsymbol{q}ar{oldsymbol{q}}+oldsymbol{q}^\daggeroldsymbol{ar{q}}^\dagger
ight
angle\sim\Lambda_{
m QCD}^3$$

Logan A. Morrison (UCSC)

Thesis Defense

- Need Lagrangian to describe pions, kaons, ect.
- Need low-energy Lagrangian describing pions, etc. to obey the symmetries of $\mathcal{L}_{\rm QCD}^{\rm light}$

$$\mathcal{L}_{
m QCD}^{
m light} \supset oldsymbol{q}^{\dagger} ar{\sigma}_{\mu} D^{\mu} oldsymbol{q} + ar{oldsymbol{q}}^{\dagger} ar{\sigma}_{\mu} D^{\mu} ar{oldsymbol{q}} + \cdots$$

- Symmetric under global $SU(3)_L \otimes SU(3)_R$ symmetry in chiral limit
- Symmetry is broken by chiral condensate: $SU(3)_L \otimes SU(3)_R \rightarrow SU(3)_V$

$$\left\langle oldsymbol{q}oldsymbol{ar{q}}+oldsymbol{q}^{\dagger}oldsymbol{ar{q}}
ight
angle \sim\Lambda_{ ext{QCD}}^{3}$$

• CCWZ tells us how to construct bottom-up Lagrangian for pseudo-Goldstones generated from symmetry breaking

Logan A. Morrison (UCSC)

Thesis Defense

The Chiral Lagrangian is

$$\mathcal{L} = \frac{f_{\pi}^2}{4} \operatorname{Tr} \left(D_{\mu} \boldsymbol{\Sigma}^{\dagger} D^{\mu} \boldsymbol{\Sigma} \right) + \frac{f_{\pi}^2}{4} \operatorname{Tr} \left(\boldsymbol{\chi} \boldsymbol{\Sigma}^{\dagger} + \boldsymbol{\Sigma} \boldsymbol{\chi}^{\dagger} \right)$$

Logan A. Morrison (UCSC)

Thesis Defense

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 1 □ • ○ Q ○
December 8, 2021 21 / 67

The Chiral Lagrangian is

$$\mathcal{L} = \frac{f_{\pi}^2}{4} \operatorname{Tr} \left(D_{\mu} \boldsymbol{\Sigma}^{\dagger} D^{\mu} \boldsymbol{\Sigma} \right) + \frac{f_{\pi}^2}{4} \operatorname{Tr} \left(\boldsymbol{\chi} \boldsymbol{\Sigma}^{\dagger} + \boldsymbol{\Sigma} \boldsymbol{\chi}^{\dagger} \right)$$

where

$$\boldsymbol{\Sigma} = \exp\left(rac{i\sqrt{2}}{f_{\pi}} \mathbf{\Pi}^a \boldsymbol{\lambda}_a
ight), \qquad \boldsymbol{\Sigma}
ightarrow \boldsymbol{U}_R \boldsymbol{\Sigma} \boldsymbol{U}_L^{\dagger}$$

 $\mathbf{\Pi}^a$ are the NBG

 λ_a Gell-Mann matrices

$$\sqrt{2}\Pi^{a}\lambda_{a} = \begin{pmatrix} \pi^{0} + \frac{1}{\sqrt{3}}\eta & \sqrt{2}\pi^{+} & \sqrt{2}K^{+} \\ \sqrt{2}\pi^{-} & -\pi^{0} + \frac{1}{\sqrt{3}}\eta & \sqrt{2}K^{0} \\ \sqrt{2}K^{-} & \sqrt{2}\overline{K}^{0} & -\frac{2}{\sqrt{3}}\eta \end{pmatrix}$$

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 21 / 67

200

(日) (四) (王) (王) (王)
Chiral Lagrangian

The Chiral Lagrangian is

$$\mathcal{L} = \frac{f_{\pi}^2}{4} \operatorname{Tr} \left(D_{\mu} \boldsymbol{\Sigma}^{\dagger} D^{\mu} \boldsymbol{\Sigma} \right) + \frac{f_{\pi}^2}{4} \operatorname{Tr} \left(\boldsymbol{\chi} \boldsymbol{\Sigma}^{\dagger} + \boldsymbol{\Sigma} \boldsymbol{\chi}^{\dagger} \right)$$

where

$$D_{\mu}\Sigma = \partial_{\mu}\Sigma - i\boldsymbol{r}_{\mu}\Sigma + i\boldsymbol{\Sigma}\boldsymbol{\ell}_{\mu}$$

and ℓ_{μ} and r_{μ} are left- and right-handed currents associated with a local $SU(3)_L \otimes SU(3)_R$ symmetry

$$egin{aligned} oldsymbol{\ell}_{\mu} &
ightarrow oldsymbol{U}_{L} oldsymbol{\ell}_{\mu} oldsymbol{U}_{R} oldsymbol{\ell}_{\mu} oldsymbol{U}_{R} oldsymbol{r}_{\mu} oldsymbol{U}_{R} oldsymbol{r}_{\mu} oldsymbol{\Sigma} &
ightarrow oldsymbol{U}_{R} oldsymbol{\ell}_{\mu} oldsymbol{\Sigma} oldsymbol{U}_{R} oldsymbol{L}_{\mu} oldsymbol{\Sigma} oldsymbol{U}_{R} oldsymbol{U}_{\mu} oldsymbol{\Sigma} oldsymbol{U}_{R} oldsymbol{U}_{\mu} oldsymbol{\Sigma} oldsymbol{U}_{R} oldsymbol{U}_{\mu} oldsymbol{\Sigma} oldsymbol{U}_{L} oldsymbol{U}_{L} oldsymbol{U}_{\mu} oldsymbol{$$

Logan A. Morrison (UCSC)

Thesis Defense

Chiral Lagrangian

The Chiral Lagrangian is

$$\mathcal{L} = \frac{f_{\pi}^2}{4} \operatorname{Tr} \left(D_{\mu} \boldsymbol{\Sigma}^{\dagger} D^{\mu} \boldsymbol{\Sigma} \right) + \frac{f_{\pi}^2}{4} \operatorname{Tr} \left(\boldsymbol{\chi} \boldsymbol{\Sigma}^{\dagger} + \boldsymbol{\Sigma} \boldsymbol{\chi}^{\dagger} \right)$$

where

$$\boldsymbol{\chi} = 2B_0(\boldsymbol{s} + i\boldsymbol{p}), \qquad \qquad \boldsymbol{\chi} \to \boldsymbol{U}_R \boldsymbol{\chi} \boldsymbol{U}_L^{\dagger}$$

and $\boldsymbol{s},\boldsymbol{p}$ are the scalar and pseudo-scalar current densities and

$$B_0 = \frac{m_\pi^2}{m_u + m_d} \approx 2600 \text{ MeV}$$

Without any external fields,

$$\mathbf{s} = \operatorname{diag}(m_u, m_d, m_s)$$

Logan A. Morrison (UCSC)

Thesis Defense

Matching

Logan A. Morrison (UCSC)

Thesis Defense

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 1 □ • ○ Q ○
December 8, 2021 22 / 67

• Below 1GeV $\mathcal{L}_{QCD} \to \mathcal{L}_{\chi PT}$

Logan A. Morrison (UCSC)

Thesis Defense

イロト イ団ト イヨト イヨト ヨークへで December 8, 2021 23 / 67

- Below 1GeV $\mathcal{L}_{QCD} \to \mathcal{L}_{\chi PT}$
- Enforce correlation functions of external fields match above and below 1 GeV

- Below 1GeV $\mathcal{L}_{QCD} \rightarrow \mathcal{L}_{\chi PT}$
- Enforce correlation functions of external fields match above and below 1 GeV
- Match ℓ_{μ}, r_{μ}, s and p in both theories

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Below 1GeV $\mathcal{L}_{QCD} \rightarrow \mathcal{L}_{\chi PT}$
- Enforce correlation functions of external fields match above and below 1 GeV
- Match ℓ_{μ}, r_{μ}, s and p in both theories
- Operators that need to be matched:

$$Sar{m{q}}G_{Sq}m{q}, \qquad ar{m{q}}\gamma^{\mu}(m{\ell}_{\mu}P_L+m{r}_{\mu}P_R)m{q}, \qquad SG^a_{\mu
u}G^{a,\mu
u}$$

イロト (四) (三) (三) (三) (0)

• Matching scalar current done in same fashion as mass term: Spurion

- Matching scalar current done in same fashion as mass term: Spurion
- Assume Spurion χ transforms properly under $\mathrm{SU}(3)_R \otimes \mathrm{SU}(3)_L$:

$$oldsymbol{\chi} o oldsymbol{U}_R oldsymbol{\chi} oldsymbol{U}_L^\dagger$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Matching scalar current done in same fashion as mass term: Spurion
- Assume Spurion χ transforms properly under $\mathrm{SU}(3)_R \otimes \mathrm{SU}(3)_L$:

$$oldsymbol{\chi}
ightarrow oldsymbol{U}_R oldsymbol{\chi} oldsymbol{U}_L^\dagger$$

• Let Spurion take its "vev"

$$\boldsymbol{\chi} \to 2B(\boldsymbol{M}_q + S\boldsymbol{G}_{Sq})$$

Logan A. Morrison (UCSC)

Thesis Defense

- Matching scalar current done in same fashion as mass term: Spurion
- Assume Spurion χ transforms properly under $\mathrm{SU}(3)_R \otimes \mathrm{SU}(3)_L$:

$$oldsymbol{\chi}
ightarrow oldsymbol{U}_R oldsymbol{\chi} oldsymbol{U}_L^\dagger$$

• Let Spurion take its "vev"

$$\boldsymbol{\chi} \to 2B(\boldsymbol{M}_q + S\boldsymbol{G}_{Sq})$$

• Matched onto ChiPT mass term:

$$-\bar{\boldsymbol{q}}(\boldsymbol{M}_{q}+S\boldsymbol{G}_{Sq})\boldsymbol{q} \rightarrow \frac{f_{\pi}^{2}}{4}\operatorname{Tr}\left[\boldsymbol{\chi}\boldsymbol{\Sigma}^{\dagger}+\text{c.c.}\right], \quad \boldsymbol{\chi}=2B(\boldsymbol{M}_{q}+S\boldsymbol{G}_{Sq})$$

Logan A. Morrison (UCSC)

Thesis Defense

Matching: $\bar{\boldsymbol{q}}\gamma^{\mu}(\boldsymbol{\ell}_{\mu}P_{L}+\boldsymbol{r}_{\mu}P_{R})\boldsymbol{q}$

• Current transform as

$$oldsymbol{r}_{\mu}
ightarrow oldsymbol{U}_R oldsymbol{r}_{\mu} oldsymbol{O}_L oldsymbol{\ell}_{\mu} oldsymbol{U}_L oldsymbol{U}_L oldsymbol{\ell}_{\mu} oldsymbol{U}_L oldsymbol{\ell}_{\mu} oldsymbol{U}_L oldsymbol{\ell}_{\mu} oldsymbol{U}_L oldsymbol{\ell}_{\mu} oldsymbol{U}_L oldsymbol{\ell}_{\mu} oldsymbol{U}_L oldsymbol{U}_L oldsymbol{\ell}_{\mu} oldsymbol{U}_L oldsymbol{\ell}_{\mu} oldsymbol{U}_L oldsymbol{\ell}_{\mu} oldsymbol{U}_L oldsymbol{\ell}_{\mu} oldsymbol{U}_L oldsymbol{U}_L oldsymbol{U}_L oldsymbol{L}_L oldsymbol{U}_L oldsymbol{U}_L oldsymbol{U}_L oldsymbol{U}_L oldsymbol{U}_L ol$$

Logan A. Morrison (UCSC)

Thesis Defense

Matching: $\bar{\boldsymbol{q}}\gamma^{\mu}(\boldsymbol{\ell}_{\mu}P_{L}+\boldsymbol{r}_{\mu}P_{R})\boldsymbol{q}$

• Current transform as

$$oldsymbol{r}_{\mu}
ightarrow oldsymbol{U}_R oldsymbol{r}_{\mu}
ightarrow oldsymbol{U}_R oldsymbol{\ell}_{\mu} oldsymbol{U}_L oldsymbol{\ell}_{\mu}
ightarrow oldsymbol{U}_L oldsymbol{U$$

• Matching currents is done using via a connection

$$D_{\mu}\boldsymbol{\Sigma} = \partial_{\mu}\boldsymbol{\Sigma} - i\boldsymbol{r}_{\mu}\boldsymbol{\Sigma} + i\boldsymbol{\Sigma}\boldsymbol{\ell}_{\mu}$$

Matching: $\bar{\boldsymbol{q}}\gamma^{\mu}(\boldsymbol{\ell}_{\mu}P_{L}+\boldsymbol{r}_{\mu}P_{R})\boldsymbol{q}$

• Current transform as

$$oldsymbol{r}_{\mu}
ightarrow oldsymbol{U}_R oldsymbol{r}_{\mu} oldsymbol{O}_L oldsymbol{\ell}_{\mu} oldsymbol{U}_L oldsymbol{\ell}_{\mu} oldsymbol{O}_L oldsymbol{\ell}_{\mu} oldsymbol{U}_L oldsymbol{\ell}_{\mu}$$

• Matching currents is done using via a connection

$$D_{\mu}\boldsymbol{\Sigma} = \partial_{\mu}\boldsymbol{\Sigma} - i\boldsymbol{r}_{\mu}\boldsymbol{\Sigma} + i\boldsymbol{\Sigma}\boldsymbol{\ell}_{\mu}$$

Vector Mediator

$$\bar{\boldsymbol{q}}\gamma^{\mu}(V_{\mu}\boldsymbol{G}_{Vq})\boldsymbol{q} \rightarrow \frac{f_{\pi}^{2}}{4}\operatorname{Tr}\left[(D_{\mu}\boldsymbol{\Sigma})^{\dagger}(D_{\mu}\boldsymbol{\Sigma})\right]$$
$$\boldsymbol{\ell}_{\mu} = \boldsymbol{r}_{\mu} = V_{\mu}\boldsymbol{G}_{Vq} = V_{\mu}\operatorname{diag}(g_{Vu}, g_{Vd}, g_{Vs})$$

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 25 / 67

Matching: $\bar{\boldsymbol{q}}\gamma^{\mu}(\boldsymbol{\ell}_{\mu}P_{L}+\boldsymbol{r}_{\mu}P_{R})\boldsymbol{q}$

• Current transform as

$$oldsymbol{r}_{\mu}
ightarrow oldsymbol{U}_R oldsymbol{r}_{\mu}
ightarrow oldsymbol{U}_R oldsymbol{r}_{\mu} oldsymbol{U}_L oldsymbol{\ell}_{\mu}
ightarrow oldsymbol{U}_L oldsymbol{U}_L \oldsymbol{U}_L oldsymbol{U}_L old$$

• Matching currents is done using via a connection

$$D_{\mu}\boldsymbol{\Sigma} = \partial_{\mu}\boldsymbol{\Sigma} - i\boldsymbol{r}_{\mu}\boldsymbol{\Sigma} + i\boldsymbol{\Sigma}\boldsymbol{\ell}_{\mu}$$

• Vector Mediator

$$\bar{\boldsymbol{q}}\gamma^{\mu}(V_{\mu}\boldsymbol{G}_{Vq})\boldsymbol{q} \rightarrow \frac{f_{\pi}^{2}}{4}\operatorname{Tr}\left[\left(D_{\mu}\boldsymbol{\Sigma}\right)^{\dagger}\left(D_{\mu}\boldsymbol{\Sigma}\right)\right]$$
$$\boldsymbol{\ell}_{\mu} = \boldsymbol{r}_{\mu} = V_{\mu}\boldsymbol{G}_{Vq} = V_{\mu}\operatorname{diag}(g_{Vu}, g_{Vd}, g_{Vs})$$

• Additional term from chiral anomaly (Wess-Zumino-Witten):

Logan A. N (0000)

• Use trace anomaly and RG invariance of scale divergence: $\partial_\mu d^\mu = \theta^\mu_\mu$

- $\bullet\,$ Use trace anomaly and RG invariance of scale divergence: $\partial_\mu d^\mu = \theta^\mu_\mu$
- Scale divergence for $\mu > \text{GeV}$

$$\partial_{\mu}d^{\mu} \sim \frac{\beta}{2g_s}G^2 + \sum_q (1 - \gamma_m)m_q\bar{q}q + \cdots$$

- $\bullet\,$ Use trace anomaly and RG invariance of scale divergence: $\partial_\mu d^\mu = \theta^\mu_\mu$
- Scale divergence for $\mu > \text{GeV}$

$$\partial_{\mu}d^{\mu} \sim \frac{\beta}{2g_s}G^2 + \sum_q (1 - \gamma_m)m_q\bar{q}q + \cdots$$

• Scalar interaction is:

$$g_{SG}\frac{\alpha}{4\pi}\frac{S}{\Lambda}G^2 \to -\frac{2g_{SG}}{\beta_0}\frac{S}{\Lambda}\partial_\mu d^\mu + \frac{2g_{SG}}{\beta_0}\frac{S}{\Lambda}\sum_q m_q\bar{q}q + \cdots$$

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 26 / 67

NOR

(日) (四) (王) (王) (王)

- $\bullet\,$ Use trace anomaly and RG invariance of scale divergence: $\partial_\mu d^\mu = \theta^\mu_\mu$
- Scale divergence for $\mu > \text{GeV}$

$$\partial_{\mu}d^{\mu} \sim \frac{\beta}{2g_s}G^2 + \sum_q (1 - \gamma_m)m_q\bar{q}q + \cdots$$

• Scalar interaction is:

$$g_{SG}\frac{\alpha}{4\pi}\frac{S}{\Lambda}G^2 \to -\frac{2g_{SG}}{\beta_0}\frac{S}{\Lambda}\partial_\mu d^\mu + \frac{2g_{SG}}{\beta_0}\frac{S}{\Lambda}\sum_q m_q\bar{q}q + \cdots$$

• Matched onto ChiPT Lagrangian by computing $\partial_{\mu}d^{\mu}$

$$\partial_{\mu}d^{\mu} = -\frac{f_{\pi}^{2}}{2}\operatorname{Tr}\left[(D_{\mu}\boldsymbol{\Sigma})^{\dagger}(D_{\mu}\boldsymbol{\Sigma})\right] - f_{\pi}^{2}\operatorname{Tr}\left[\boldsymbol{\chi}\boldsymbol{\Sigma}^{\dagger} + \text{c.c.}\right]$$

Logan A. Morrison (UCSC)

$$\mathcal{L}_{\mu>\text{GeV}} \supset \bar{\boldsymbol{q}}\boldsymbol{r}_{\mu}\gamma^{\mu}P_{R}\boldsymbol{q} + \bar{\boldsymbol{q}}\boldsymbol{\ell}_{\mu}\gamma^{\mu}P_{L}\boldsymbol{q} + \bar{\boldsymbol{q}}s\boldsymbol{q} + \phi\frac{\alpha}{4\pi}G^{a}_{\mu\nu}G^{\mu\nu,a}$$

$$\int$$

$$D_{\mu}\boldsymbol{\Sigma} = \partial_{\mu}\boldsymbol{\Sigma} - i\boldsymbol{r}_{\mu}\boldsymbol{\Sigma} + i\boldsymbol{\Sigma}\boldsymbol{\ell}_{\mu} \qquad \chi = 2B_{0}\left(s + \left(1 - \frac{2}{\beta_{0}}\phi\right)\boldsymbol{M}_{q}\right)$$

$$\mathcal{L}_{\mu < \text{GeV}} \supset \frac{f_{\pi}^2}{4} \operatorname{Tr} \left[(D_{\mu} \boldsymbol{\Sigma})^{\dagger} (D_{\mu} \boldsymbol{\Sigma}) \right] + \frac{f_{\pi}^2}{4} \operatorname{Tr} \left[\boldsymbol{\chi} \boldsymbol{\Sigma}^{\dagger} + \text{c.c.} \right] - \frac{f_{\pi}^2}{\beta_0} \phi \operatorname{Tr} \left[(D_{\mu} \boldsymbol{\Sigma})^{\dagger} (D_{\mu} \boldsymbol{\Sigma}) \right] + \frac{2f_{\pi}^2}{\beta_0} \phi \operatorname{Tr} \left[\boldsymbol{\chi} \boldsymbol{\Sigma}^{\dagger} + \text{c.c.} \right]$$

Logan A. Morrison (UCSC)

Thesis Defense

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 1 □ √ 0 0 December 8, 2021 27 / 67

 $\mathcal{L}_{\mu>\text{GeV}} \supset \bar{\boldsymbol{q}} \underline{\boldsymbol{r}}_{\mu}^{\mu} \gamma^{\mu} P_{R} \boldsymbol{q} + \bar{\boldsymbol{q}} \underline{\boldsymbol{\ell}}_{\mu} \gamma^{\mu} P_{L} \boldsymbol{q} + \bar{q} s \boldsymbol{q} + \phi \frac{\alpha}{4\pi} G^{a}_{\mu\nu} G^{\mu\nu,a}$ $D_{\mu}\Sigma = \partial_{\mu}\Sigma - i\boldsymbol{r}_{\mu}\Sigma + i\Sigma\boldsymbol{\ell}_{\mu}$ $\boldsymbol{\chi} = 2B_0 \left(\boldsymbol{s} + \left(1 - \frac{2}{\beta_0} \phi \right) \boldsymbol{M}_{\boldsymbol{q}} \right)$ $\mathcal{L}_{\mu < \text{GeV}} \supset \frac{f_{\pi}^2}{4} \operatorname{Tr} \left[(D_{\mu} \Sigma)^{\dagger} (D_{\mu} \Sigma) \right] + \frac{f_{\pi}^2}{4} \operatorname{Tr} \left[\chi \Sigma^{\dagger} + \text{c.c.} \right]$ $-\frac{f_{\pi}^{2}}{g_{\alpha}}\phi\operatorname{Tr}\left[(D_{\mu}\Sigma)^{\dagger}(D_{\mu}\Sigma)\right]+\frac{2f_{\pi}^{2}}{g_{\alpha}}\phi\operatorname{Tr}\left[\chi\Sigma^{\dagger}+\mathrm{c.c.}\right]$

Logan A. Morrison (UCSC)

Thesis Defense

▲□ ト ◆ □ ト ◆ 三 ト ◆ 三 ト ○ Q ○
December 8, 2021 27 / 67

$\mathcal{L}_{\mu < \text{GeV}} \supset \frac{f_{\pi}^{2}}{4} \operatorname{Tr} \left[(D_{\mu} \boldsymbol{\Sigma})^{\dagger} (D_{\mu} \boldsymbol{\Sigma}) \right] + \frac{f_{\pi}^{2}}{4} \operatorname{Tr} \left[\boldsymbol{\chi} \boldsymbol{\Sigma}^{\dagger} + \text{c.c.} \right]$ $- \frac{f_{\pi}^{2}}{\beta_{0}} \phi \operatorname{Tr} \left[(D_{\mu} \boldsymbol{\Sigma})^{\dagger} (D_{\mu} \boldsymbol{\Sigma}) \right] + \frac{2f_{\pi}^{2}}{\beta_{0}} \phi \operatorname{Tr} \left[\boldsymbol{\chi} \boldsymbol{\Sigma}^{\dagger} + \text{c.c.} \right]$

Logan A. Morrison (UCSC)

Thesis Defense

▲□ ト ◆ □ ト ◆ 三 ト ◆ 三 ト ○ Q ○
December 8, 2021 27 / 67

Logan A. Morrison (UCSC)

Thesis Defense

▲□ → 《□ → 《三 → 《三 → 《三 → ② Q ○
December 8, 2021 27 / 67

 $\mathcal{L}_{\mu > ext{GeV}} \supset ar{q}r_{\mu}\gamma^{\mu}P_{R}q + ar{q}\ell_{\mu}\gamma^{\mu}P_{L}q + ar{q}sq + \phirac{lpha}{4\pi}G^{a}_{\mu
u}G^{\mu
u,a}$ $\boldsymbol{\chi} = 2B_0 \left(\boldsymbol{s} + \left(1 - \frac{2}{\beta_0} \phi \right) \boldsymbol{M}_{\boldsymbol{q}} \right)$ $D_{\mu}\Sigma = \partial_{\mu}\Sigma - ir_{\mu}\Sigma + i\Sigma\ell_{\mu}$ $\mathcal{L}_{\mu < \text{GeV}} \supset \frac{f_{\pi}^2}{4} \operatorname{Tr} \left[(D_{\mu} \Sigma)^{\dagger} (D_{\mu} \Sigma) \right] + \frac{f_{\pi}^2}{4} \operatorname{Tr} \left[\chi \Sigma^{\dagger} + \text{c.c.} \right]$ $-\frac{f_{\pi}^{2}}{\beta_{0}}\phi\operatorname{Tr}\left[(D_{\mu}\boldsymbol{\Sigma})^{\dagger}(D_{\mu}\boldsymbol{\Sigma})\right]+\frac{2f_{\pi}^{2}}{\beta_{0}}\phi\operatorname{Tr}\left[\boldsymbol{\chi}\boldsymbol{\Sigma}^{\dagger}+\mathrm{c.c.}\right]$

Logan A. Morrison (UCSC)

Thesis Defense

Logan A. Morrison (UCSC)

Thesis Defense

▲□ → 《□ → 《三 → 《三 → 《三 → ② Q ○
December 8, 2021 27 / 67

From $\mu > 1$ GeV to $\mu < 1$ GeV : Matching - vector • Below a GeV

$$\begin{split} \mathcal{L}_{V} \supset g_{V\chi} V_{\mu} \overline{\chi} \gamma^{\mu} \chi + \sum_{\ell} g_{V\ell} V_{\mu} \overline{\ell} \gamma^{\mu} \ell \\ &+ \frac{f_{\pi}^{2}}{4} \operatorname{Tr} \left((D_{\mu} \Sigma)^{\dagger} D_{\mu} \Sigma \right) + \frac{f_{\pi}^{2}}{4} \operatorname{Tr} \left(\chi \Sigma^{\dagger} + \Sigma \chi^{\dagger} \right) \end{split}$$

with

$$\begin{split} D_{\mu} \Sigma &= \partial_{\mu} \Sigma - i r_{\mu} \Sigma + i \Sigma \ell_{\mu} \\ \chi &= 2B_0 s \\ s &= \text{diag}(m_u, m_d, m_s) \\ r_{\mu} &= \ell_{\mu} = -e A_{\mu} \text{diag}\left(\frac{2}{3}, -\frac{1}{3}, -\frac{1}{3}\right) + V_{\mu} \text{diag}(g_{Vu}, g_{Vd}, g_{Vs}) \end{split}$$

Logan A. Morrison (UCSC)

Thesis Defense

From $\mu > 1$ GeV to $\mu < 1$ GeV : Matching - **vector**

Logan A. Morrison (UCSC)

Thesis Defense

◆□ ▶ 《□ ▶ 《三 ▶ 《三 ▶ ④ ○ ○
 December 8, 2021 28 / 67

• Below 1 GeV, we have

$$\begin{split} \mathcal{L}_{S} \supset g_{S\chi} S \overline{\chi} \chi + g_{fV} \frac{S}{v} \sum_{\ell} m_{\ell} \overline{\ell} \ell + \frac{\alpha_{\rm EM}}{4\pi\Lambda} g_{SF} S F^{2} \\ &+ \frac{f_{\pi}^{2}}{4} \operatorname{Tr} \left((D_{\mu} \Sigma)^{\dagger} D_{\mu} \Sigma \right) + \frac{f_{\pi}^{2}}{4} \operatorname{Tr} \left(\chi \Sigma^{\dagger} + \Sigma \chi^{\dagger} \right) \\ &+ \frac{2g_{G}}{9v} S \left(\frac{f_{\pi}^{2}}{2} \operatorname{Tr} \left((D_{\mu} \Sigma)^{\dagger} (D^{\mu} \Sigma) \right) + f_{\pi}^{2} \operatorname{Tr} \left(\chi \Sigma^{\dagger} + \Sigma \chi^{\dagger} \right) \right) \end{split}$$

with

$$\begin{split} D_{\mu}\Sigma &= \partial_{\mu}\Sigma - ir_{\mu}\Sigma + i\Sigma\ell_{\mu} \\ \chi &= 2B_{0}s \\ s &= \mathrm{diag}(m_{u}, m_{d}, m_{s})\left(1 + g_{Sf}\frac{S}{v}\right) \\ r_{\mu} &= \ell_{\mu} = -eA_{\mu}\mathrm{diag}\left(\frac{2}{3}, -\frac{1}{3}, -\frac{1}{3}\right) \end{split}$$

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 29 / 67

From $\mu > 1$ GeV to $\mu < 1$ GeV : Matching- scalar

Logan A. Morrison (UCSC)

Thesis Defense

$$\mathcal{L}_{\bar{\nu}(\text{int})} = \frac{f_{\pi}^2}{4} \operatorname{Tr} \Big[|\partial_{\mu} \boldsymbol{\Sigma} - i \boldsymbol{r}_{\mu} \boldsymbol{\Sigma} + i \boldsymbol{\Sigma} \boldsymbol{\ell}_{\mu}|^2 \Big]$$

Currents:

$$m{r}_{\mu}=-rac{8G_F}{\sqrt{2}}m{G}_R R^0_{\mu}, \qquad \quad m{\ell}_{\mu}=-rac{4G_F}{\sqrt{2}}\Big(2m{G}_L m{L}^0_{\mu}+m{V}^\dagger m{L}^-_{\mu}\Big)$$

$$\begin{split} L^0_{\mu} &= \frac{\sin(2\theta)}{4c_W} \delta_{ik} \Big(\nu_i^{\dagger} \bar{\sigma}_{\mu} \bar{\nu} + \text{c.c.} \Big) + \frac{1}{2c_W} \Big(-1 + 2s_W^2 \Big) \ell_i^{\dagger} \bar{\sigma}_{\mu} \ell_i \\ L^-_{\mu} &= \sin \theta \delta_{ik} \ell_i^{\dagger} \bar{\sigma}_{\mu} \bar{\nu} \\ R^0_{\mu} &= \frac{s_W^2}{c_W} \bar{\ell}_i^{\dagger} \bar{\sigma}_{\mu} \bar{\ell}_i \end{split}$$

Logan A. Morrison (UCSC)

Thesis Defense

$$\mathcal{L}_{ar{
u}(ext{int})} = rac{f_{\pi}^2}{4} \operatorname{Tr} \Big[|\partial_{\mu} \mathbf{\Sigma} - i \mathbf{r}_{\mu} \mathbf{\Sigma} + i \mathbf{\Sigma} \boldsymbol{\ell}_{\mu}|^2 \Big]$$

Currents:

$$\boldsymbol{r}_{\mu} = 2\boldsymbol{G}_{R}R_{\mu}^{0}, \qquad \qquad \boldsymbol{\ell}_{\mu} = 2\boldsymbol{G}_{L}L_{\mu}^{0} + \boldsymbol{V}^{\dagger}L_{\mu}^{-}$$

$$\begin{aligned} \boldsymbol{G}_{R} &= -\frac{s_{W}^{2}}{3c_{W}} \text{diag}(2, -1, -1) \\ \boldsymbol{G}_{L} &= \frac{1}{2c_{W}} \text{diag}(1, -1, -1) + \boldsymbol{G}_{R} \\ \boldsymbol{V} &= \begin{pmatrix} 0 & V_{ud} & V_{us} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \end{aligned}$$

Logan A. Morrison (UCSC)

Thesis Defense

From $\mu > 1$ GeV to $\mu < 1$ GeV : Matching- **RHN**

Logan A. Morrison (UCSC)

Thesis Defense

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 31 / 67

• Chiral perturbation theory has a limited range of validity

- Chiral perturbation theory has a limited range of validity
- The chiral expansion is

where $\Lambda_{\chi} \approx 4\pi f_{\pi} \approx 1.2 \text{ GeV}$

Logan A. Morrison (UCSC)

Thesis Defense

Logan A. Morrison (UCSC)

Thesis Defense

◆ □ ▶ < ≡ ▶ < ≡ ▶ ≡ < ○ < ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
Validity of ChiPT

Thesis Defense

December 8, 2021 32 / 67

Validity of ChiPT

Logan A. Morrison (UCSC)

Thesis Defense

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• Gamma ray flux observed by detector

$$\frac{\mathrm{d}\Phi}{\mathrm{d}E_{\gamma}} = \frac{\Delta\Omega}{4\pi m_{\chi}^a} \cdot \left[\frac{1}{\Delta\Omega}\int\mathrm{d}\Omega\int_{\mathrm{LOS}}\mathrm{d}\ell\,\rho_{\chi}^a\right]\cdot\Gamma\cdot\frac{\mathrm{d}N}{\mathrm{d}E_{\gamma}}$$

Logan A. Morrison (UCSC)

イロト イ団ト イヨト イヨト ヨークへで December 8, 2021 34 / 67

• Gamma ray flux observed by detector

$$\frac{\mathrm{d}\Phi}{\mathrm{d}E_{\gamma}} = \frac{\Delta\Omega}{4\pi m_{\chi}^{a}} \cdot \left[\frac{1}{\Delta\Omega}\int\mathrm{d}\Omega\int_{\mathrm{LOS}}\mathrm{d}\ell\,\rho_{\chi}^{a}\right]\cdot\Gamma\cdot\frac{\mathrm{d}N}{\mathrm{d}E_{\gamma}}$$

Integral along detector's "Line-of-sight" of dark matter density of target with angular size $\Delta\Omega$ a = 2 for annhibiting DM a = 1 for decaying DM

	$[MeV^2 cm^{-5} sr^{-1}]$		$[\mathrm{MeV cm^{-2} sr^{-1}}]$	
Target	J(1')	$J(5^{\circ})$	D(1')	$D(5^{\circ})$
Galactic Center (NFW) Galactic Center (Einasto) Draco (NFW) M31 (NFW)	$\begin{array}{c} 6.972 \times 10^{32} \\ 5.987 \times 10^{34} \\ 3.418 \times 10^{30} \\ 1.496 \times 10^{31} \end{array}$	$\begin{array}{c} 1.782 \times 10^{30} \\ 4.965 \times 10^{31} \\ 8.058 \times 10^{26} \\ 1.479 \times 10^{27} \end{array}$	$\begin{array}{c} 4.84 \times 10^{26} \\ 4.179 \times 10^{27} \\ 5.949 \times 10^{25} \\ 3.297 \times 10^{26} \end{array}$	$\begin{array}{c} 1.597 \times 10^{26} \\ 2.058 \times 10^{26} \\ 1.986 \times 10^{24} \\ 4.017 \times 10^{24} \end{array}$

Logan A. Morrison (UCSC)

Thesis Defense

• Gamma ray flux observed by detector

$$\frac{\mathrm{d}\Phi}{\mathrm{d}E_{\gamma}} = \frac{\Delta\Omega}{4\pi m_{\chi}^a} \cdot \left[\frac{1}{\Delta\Omega}\int\mathrm{d}\Omega\int_{\mathrm{LOS}}\mathrm{d}\ell\,\rho_{\chi}^a\right]\cdot \mathbf{\Gamma}\cdot\frac{\mathrm{d}N}{\mathrm{d}E_{\gamma}}$$

DM interaction rate:

Annhilating DM :
$$\Gamma = \frac{\langle \sigma v \rangle}{2f_{\chi}}$$

Decaying DM : $\Gamma = \frac{1}{\tau}$

Logan A. Morrison (UCSC)

Thesis Defense

イロト イ団ト イヨト イヨト ヨー の Q (*) December 8, 2021 34 / 67

• Gamma ray flux observed by detector

$$\frac{\mathrm{d}\Phi}{\mathrm{d}E_{\gamma}} = \frac{\Delta\Omega}{4\pi m_{\chi}^a} \cdot \left[\frac{1}{\Delta\Omega}\int\mathrm{d}\Omega\int_{\mathrm{LOS}}\mathrm{d}\ell\,\rho_{\chi}^a\right]\cdot\Gamma\cdot\frac{\mathrm{d}N}{\mathrm{d}E_{\gamma}}$$

Photon spectrum per annhibition/decay:

$$\frac{\mathrm{d}N}{\mathrm{d}E_{\gamma}} = \sum_{X} \mathrm{BR}(\bar{\chi}\chi \to \gamma + X) \frac{\mathrm{d}N_{\bar{\chi}\chi \to \gamma + X}}{\mathrm{d}E_{\gamma}}$$

Logan A. Morrison (UCSC)

Thesis Defense

Logan A. Morrison (UCSC)

Thesis Defense

Logan A. Morrison (UCSC)

Thesis Defense

Logan A. Morrison (UCSC)

Thesis Defense

• Gamma ray flux observed by detector

$$\frac{\mathrm{d}\Phi}{\mathrm{d}E_{\gamma}} = \frac{\Delta\Omega}{4\pi m_{\chi}^a} \cdot \left[\frac{1}{\Delta\Omega}\int\mathrm{d}\Omega\int_{\mathrm{LOS}}\mathrm{d}\ell\,\rho_{\chi}^a\right]\cdot\Gamma\cdot\frac{\mathrm{d}N}{\mathrm{d}E_{\gamma}}$$

• Including detector energy resolution

$$\frac{\mathrm{d}\bar{\Phi}}{\mathrm{d}E_{\gamma}} = \int \mathrm{d}\tilde{E}_{\gamma} \, R_{\epsilon}(E_{\gamma}|\tilde{E}_{\gamma}) \frac{\mathrm{d}\bar{\Phi}}{\mathrm{d}E_{\gamma}}$$

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 34 / 67

• Gamma ray flux observed by detector

$$\frac{\mathrm{d}\Phi}{\mathrm{d}E_{\gamma}} = \frac{\Delta\Omega}{4\pi m_{\chi}^a} \cdot \left[\frac{1}{\Delta\Omega}\int\mathrm{d}\Omega\int_{\mathrm{LOS}}\mathrm{d}\ell\,\rho_{\chi}^a\right]\cdot\Gamma\cdot\frac{\mathrm{d}N}{\mathrm{d}E_{\gamma}}$$

• Including detector energy resolution

$$\frac{\mathrm{d}\bar{\Phi}}{\mathrm{d}E_{\gamma}} = \int \mathrm{d}\tilde{E}_{\gamma} \, R_{\epsilon}(E_{\gamma}|\tilde{E}_{\gamma}) \frac{\mathrm{d}\bar{\Phi}}{\mathrm{d}E_{\gamma}}$$

Detector energy resolution \sim Gaussian:

$$R_{\epsilon}(E_{\gamma}|\tilde{E}_{\gamma}) \sim \frac{1}{\sqrt{2\pi}} \frac{1}{\epsilon \tilde{E}} \exp\left(-\frac{1}{2} \left(\frac{\tilde{E}-E}{\epsilon \tilde{E}}\right)^2\right)$$

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 34 / 67

イロト (日) (日) (日) (日) (日) (日)

• Gamma ray flux observed by detector

$$\frac{\mathrm{d}\Phi}{\mathrm{d}E_{\gamma}} = \frac{\Delta\Omega}{4\pi m_{\chi}^a} \cdot \left[\frac{1}{\Delta\Omega}\int\mathrm{d}\Omega\int_{\mathrm{LOS}}\mathrm{d}\ell\,\rho_{\chi}^a\right]\cdot\Gamma\cdot\frac{\mathrm{d}N}{\mathrm{d}E_{\gamma}}$$

• Including detector energy resolution

$$\frac{\mathrm{d}\bar{\Phi}}{\mathrm{d}E_{\gamma}} = \int \mathrm{d}\tilde{E}_{\gamma} \, R_{\epsilon}(E_{\gamma}|\tilde{E}_{\gamma}) \frac{\mathrm{d}\bar{\Phi}}{\mathrm{d}E_{\gamma}}$$

• Observed photon count in energy bin $(E_{\min}^{(i)}, E_{\max}^{(i)})$

$$N_{\gamma} = \int_{E_{\min}^{(i)}}^{E_{\max}^{(i)}} \mathrm{d}E_{\gamma} T_{\mathrm{obs}} A_{\mathrm{eff}}(E_{\gamma}) \frac{\mathrm{d}\bar{\Phi}}{\mathrm{d}E_{\gamma}}$$

Logan A. Morrison (UCSC)

Thesis Defense

• For telescopes with reported data, constrain by asserting DM signal no greater that twice the upper error

$$\left[\int_{E_{\text{low}}^{(i)}}^{E_{\text{high}}^{(i)}} \mathrm{d}E_{\gamma} \, \frac{\mathrm{d}\Phi_{\gamma}}{\mathrm{d}E_{\gamma}}\right] \leq \Phi_{\gamma}^{(i)} + 2\delta\Phi_{\gamma}^{(i)}, \qquad i \in 1, \dots, N_{\text{bins}}$$

Logan A. Morrison (UCSC)

Thesis Defense

▲ □ → ▲ ■ → ▲ ■ → ■ 一 つ Q ○
December 8, 2021 35 / 67

Logan A. Morrison (UCSC)

Thesis Defense

• For telescopes with reported data, constrain by asserting DM signal no greater that twice the upper error

$$\left[\int_{E_{\text{low}}^{(i)}}^{E_{\text{high}}^{(i)}} \mathrm{d}E_{\gamma} \, \frac{\mathrm{d}\Phi_{\gamma}}{\mathrm{d}E_{\gamma}}\right] \le \Phi_{\gamma}^{(i)} + 2\delta\Phi_{\gamma}^{(i)}, \qquad i \in 1, \dots, N_{\text{bins}}$$

• For projecting constrains we maximize the SNR w.r.t. upper and low energy range and restrict the result to be less then 5 σ

$$5 \ge \max_{a,b} \frac{N_S(a,b)}{\sqrt{N_{\text{bkg}}(a,b)}}$$

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 35/67

• For telescopes with reported data, constrain by asserting DM signal no greater that twice the upper error

$$\left[\int_{E_{\text{low}}^{(i)}}^{E_{\text{high}}^{(i)}} \mathrm{d}E_{\gamma} \, \frac{\mathrm{d}\Phi_{\gamma}}{\mathrm{d}E_{\gamma}}\right] \leq \Phi_{\gamma}^{(i)} + 2\delta\Phi_{\gamma}^{(i)}, \qquad i \in 1, \dots, N_{\text{bins}}$$

• For projecting constrains we maximize the SNR w.r.t. upper and low energy range and restrict the result to be less then 5 σ

$$5 \ge \max_{a,b} \frac{N_S(a,b)}{\sqrt{N_{\text{bkg}}(a,b)}}$$

$$N_{S,\mathbf{bkg}}(a,b) = \int_{a}^{b} \mathrm{d}E_{\gamma} \, \frac{\mathrm{d}\Phi_{\gamma}^{S,\mathbf{bkg}}}{\mathrm{d}E_{\gamma}}$$

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 35/67

• For telescopes with reported data, constrain by asserting DM signal no greater that twice the upper error

$$\left[\int_{E_{\text{low}}^{(i)}}^{E_{\text{high}}^{(i)}} \mathrm{d}E_{\gamma} \, \frac{\mathrm{d}\Phi_{\gamma}}{\mathrm{d}E_{\gamma}}\right] \le \Phi_{\gamma}^{(i)} + 2\delta\Phi_{\gamma}^{(i)}, \qquad i \in 1, \dots, N_{\text{bins}}$$

• For projecting constrains we maximize the SNR w.r.t. upper and low energy range and restrict the result to be less then 5 σ

$$5 \geq \max_{a,b} \frac{N_S(a,b)}{\sqrt{N_{\rm bkg}(a,b)}}$$

• For targets away from Galactic center we use empirical power-law background fit to COMPTEL

$$\frac{d\Phi}{dE_{\gamma}} = 2.74 \times 10^{-3} \left(\frac{E_{\gamma}}{MeV}\right)^{-2} MeV^{-1} cm^{-1} s^{-1} sr^{-1}$$

Logan A. Morrison (UCSC)

Thesis Defense

• For telescopes with reported data, constrain by asserting DM signal no greater that twice the upper error

$$\left[\int_{E_{\text{low}}^{(i)}}^{E_{\text{high}}^{(i)}} \mathrm{d}E_{\gamma} \, \frac{\mathrm{d}\Phi_{\gamma}}{\mathrm{d}E_{\gamma}}\right] \le \Phi_{\gamma}^{(i)} + 2\delta\Phi_{\gamma}^{(i)}, \qquad i \in 1, \dots, N_{\text{bins}}$$

• For projecting constrains we maximize the SNR w.r.t. upper and low energy range and restrict the result to be less then 5 σ

$$5 \geq \max_{a,b} \frac{N_S(a,b)}{\sqrt{N_{\rm bkg}(a,b)}}$$

• For targets away from Galactic center we use empirical power-law background fit to COMPTEL

$$\frac{d\Phi}{dE_{\gamma}} = 2.74 \times 10^{-3} \left(\frac{E_{\gamma}}{MeV}\right)^{-2} MeV^{-1} cm^{-1} s^{-1} sr^{-1}$$

Logan A. Morrison (UCSC)

Thesis Defense

Logan A. Morrison (UCSC)

Thesis Defense

Higgs Portal Constraints

Thesis Defense

Higgs Portal Constraints

Thesis Defense

Э 5900 December 8, 2021 36 / 67

Higgs Portal Constraints

Thesis Defense

Kinetic Mixing Constraints

Logan A. Morrison (UCSC)

Thesis Defense

RH Neutrino Constraints

Logan A. Morrison (UCSC)

Thesis Defense

Model Independent Constraints

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 39 / 67

Model Independent Constraints

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 39 / 67

Primodial Black Holes

A. Coogan, S. Profumo, LM: arXiv:2010.04797
 A. Coogan, S. Profumo, LM: arXiv:2101.10370

Logan A. Morrison (UCSC)

Thesis Defense

^① Can MeV telescopes be used to probe Hawking radiation for PBH?

- ^① Can MeV telescopes be used to probe Hawking radiation for PBH?
- 2 Primary emission rates

$$\frac{\partial^2 N}{\partial E_i \partial t} = \frac{1}{2\pi} \frac{\Gamma(E_i, M)}{e^{E_i/T_H} - (-1)^{2s}}, \qquad T_H = \frac{M_{\rm pl}^2}{8\pi M_H}$$

- ^① Can MeV telescopes be used to probe Hawking radiation for PBH?
- 2 Primary emission rates

Logan A. Morrison (UCSC)

Thesis Defense

- ^① Can MeV telescopes be used to probe Hawking radiation for PBH?
- 2 Primary emission rates

$$\frac{\partial^2 N}{\partial E_i \partial t} = \frac{1}{2\pi} \frac{\Gamma(E_i, M)}{e^{E_i/T_H} - (-1)^{2s}}, \qquad T_H = \frac{M_{\rm pl}^2}{8\pi M_H}$$

3 Total photon spectrum

$$\begin{split} \frac{\partial^2 N}{\partial E_{\gamma} \partial t} &= \frac{\partial^2 N_{\gamma, \text{primary}}}{\partial E_{\gamma} \partial t} + \sum_{i=e^{\pm}, \mu^{\pm}, \pi^{\pm}} \int \mathrm{d}E_i \, \frac{\partial^2 N_{i, \text{primary}}}{\partial E_i \partial t} \frac{\mathrm{d}N_{\gamma}^{\text{FSR}}}{\mathrm{d}E_{\gamma}} \\ &+ \sum_{i=\mu^{\pm}, \pi^0, \pi^{\pm}} \int \mathrm{d}E_i \, \frac{\partial^2 N_{i, \text{primary}}}{\partial E_i \partial t} \frac{\mathrm{d}N_{\gamma}^{\text{decay}}}{\mathrm{d}E_{\gamma}} \end{split}$$

Logan A. Morrison (UCSC)

Thesis Defense

Hawking Radiation: Photon Spectrum

$$\begin{split} \frac{\partial^2 N}{\partial E_{\gamma} \partial t} &= \frac{\partial^2 N_{\gamma, \text{primary}}}{\partial E_{\gamma} \partial t} + \sum_{i=e^{\pm}, \mu^{\pm}, \pi^{\pm}} \int \mathrm{d}E_i \, \frac{\partial^2 N_{i, \text{primary}}}{\partial E_i \partial t} \frac{\mathrm{d}N_{\gamma}^{\text{FSR}}}{\mathrm{d}E_{\gamma}} \\ &+ \sum_{i=\mu^{\pm}, \pi^0, \pi^{\pm}} \int \mathrm{d}E_i \, \frac{\partial^2 N_{i, \text{primary}}}{\partial E_i \partial t} \frac{\mathrm{d}N_{\gamma}^{\text{decay}}}{\mathrm{d}E_{\gamma}} \end{split}$$

Logan A. Morrison (UCSC)

Thesis Defense

4 □ ▶ 4 □ ■

Hawking Radiation: Photon Spectrum

$$\frac{\partial^2 N}{\partial E_{\gamma} \partial t} = \frac{\partial^2 N_{\gamma, \text{primary}}}{\partial E_{\gamma} \partial t} + \sum_{i=e^{\pm}, \mu^{\pm}, \pi^{\pm}} \int dE_i \frac{\partial^2 N_{i, \text{primary}}}{\partial E_i \partial t} \frac{dN_{\gamma}^{\text{FSR}}}{dE_{\gamma}} + \sum_{i=\mu^{\pm}, \pi^0, \pi^{\pm}} \int dE_i \frac{\partial^2 N_{i, \text{primary}}}{\partial E_i \partial t} \frac{dN_{\gamma}^{\text{decay}}}{dE_{\gamma}}$$

Primary spectra:

$$\frac{\partial^2 N_{\gamma,\text{primary}}}{\partial E_{\gamma} \partial t} = \frac{1}{2\pi} \frac{\Gamma(E_{\gamma}, M)}{e^{E_{\gamma}/T_H} - 1}$$

Logan A. Morrison (UCSC)

Thesis Defense

4 □ ▶ 4 □ ■
Hawking Radiation: Photon Spectrum

$$\begin{aligned} \frac{\partial^2 N}{\partial E_{\gamma} \partial t} &= \frac{\partial^2 N_{\gamma, \text{primary}}}{\partial E_{\gamma} \partial t} + \sum_{i=e^{\pm}, \mu^{\pm}, \pi^{\pm}} \int \mathrm{d}E_i \, \frac{\partial^2 N_{i, \text{primary}}}{\partial E_i \partial t} \frac{\mathrm{d}N_{\gamma}^{\text{FSR}}}{\mathrm{d}E_{\gamma}} \\ &+ \sum_{i=\mu^{\pm}, \pi^0, \pi^{\pm}} \int \mathrm{d}E_i \, \frac{\partial^2 N_{i, \text{primary}}}{\partial E_i \partial t} \frac{\mathrm{d}N_{\gamma}^{\text{decay}}}{\mathrm{d}E_{\gamma}} \end{aligned}$$

FSR: $(x = E_{\gamma}/E_i)$

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 42 / 67

イロト イポト イラト イラト・ラ

Hawking Radiation: Photon Spectrum

Hawking Radiation: Photon Spectrum

Logan A. Morrison (UCSC)

Thesis Defense

Constraining $f_{\rm PBH}$

• Given a fraction of DM in the form of (monochromatic) PBHs $f_{\rm PBH} = \Omega_{\rm PBH} / \Omega_{\rm CDM}$ observed gamma-ray spectrum is:

$$\frac{\mathrm{d}\Phi_{\gamma}}{\mathrm{d}E_{\gamma}} = \frac{1}{4\pi} \int_{\mathrm{LOS}} \mathrm{d}\ell \, \frac{\partial^2 N_{\gamma}}{\partial E_{\gamma} \partial t} f_{\mathrm{PBH}} \frac{\rho_{\mathrm{DM}}}{M}$$

Constraining f_{PBH}

• Given a fraction of DM in the form of (monochromatic) PBHs $f_{\rm PBH} = \Omega_{\rm PBH} / \Omega_{\rm CDM}$ observed gamma-ray spectrum is:

$$\frac{\mathrm{d}\Phi_{\gamma}}{\mathrm{d}E_{\gamma}} = \frac{1}{4\pi} \int_{\mathrm{LOS}} \mathrm{d}\ell \, \frac{\partial^2 N_{\gamma}}{\partial E_{\gamma} \partial t} f_{\mathrm{PBH}} \frac{\rho_{\mathrm{DM}}}{M}$$

• As with decaying DM, number of observed photons:

$$N_{\gamma} = T_{\rm obs} \int_{E_{\rm min}}^{E_{\rm max}} \mathrm{d}E_{\gamma} \, A_{\rm eff} \int \mathrm{d}\tilde{E_{\gamma}} \, R_{\epsilon}(E_{\gamma}, \tilde{E_{\gamma}}) \frac{\mathrm{d}\Phi}{\mathrm{d}E_{\gamma}}$$

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 43 / 67

Constraining f_{PBH}

Logan A. Morrison (UCSC)

Thesis Defense

Constraining f_{PBH}

Future Work

Logan A. Morrison (UCSC)

Thesis Defense

4 □ ▶ 4 □ ▶ 4 ■ ▶ 4 ■ ▶ 4 ■ ▶ 2021 December 8, 2021 44 / 67

• Currently we are limited to $m_\chi \lesssim 250$ MeV ($\lesssim 500$ MeV for decaying DM)

- Currently we are limited to $m_\chi \lesssim 250$ MeV ($\lesssim 500$ MeV for decaying DM)
- Can we extend this?

- Currently we are limited to $m_\chi \lesssim 250$ MeV ($\lesssim 500$ MeV for decaying DM)
- Can we extend this? Yes! (in some cases)

- Currently we are limited to $m_\chi \lesssim 250$ MeV ($\lesssim 500$ MeV for decaying DM)
- Idea: assume DM couplings to quarks via

$$\mathcal{L} \supset \sum_{q} g_{Vq} V_{\mu} \bar{q} \gamma^{\mu} q$$

- Currently we are limited to $m_\chi \lesssim 250$ MeV ($\lesssim 500$ MeV for decaying DM)
- Idea: assume DM couplings to quarks via

$$\mathcal{L} \supset \sum_{q} g_{Vq} V_{\mu} \bar{q} \gamma^{\mu} q$$

• We can exploit e^+e^- collision data to extract vector form factors using vector meson dominance

$$\begin{split} \mathcal{M} &\sim \left\langle \mathrm{had} \right| J_{\mathrm{EM}}^{\mu} \left| 0 \right\rangle \left\langle 0 \right| \gamma^{\mu} \left| \bar{\chi} \chi \right\rangle \\ \left\langle \mathrm{had} \right| J_{\mathrm{EM}}^{\mu} \left| 0 \right\rangle &= \sum_{T,i} T^{\mu} \frac{\mathcal{A}_{i} e^{i\phi_{i}}}{m_{i}^{2} - s + i\sqrt{s}\Gamma_{i}(s)} \end{split}$$

Logan A. Morrison (UCSC)

Thesis Defense

- Currently we are limited to $m_\chi \lesssim 250$ MeV ($\lesssim 500$ MeV for decaying DM)
- Idea: assume DM couplings to quarks via

$$\mathcal{L} \supset \sum_{q} g_{Vq} V_{\mu} \bar{q} \gamma^{\mu} q$$

• We can exploit e^+e^- collision data to extract vector form factors using vector meson dominance

$$\begin{split} \mathcal{M} &\sim \left< \text{had} \right| J_{\text{EM}}^{\mu} \left| 0 \right> \left< 0 \right| \gamma^{\mu} \left| \bar{\chi} \chi \right> \\ \left< \text{had} \right| J_{\text{EM}}^{\mu} \left| 0 \right> &= \sum_{T,i} T^{\mu} \frac{\mathcal{A}_{i} e^{i\phi_{i}}}{m_{i}^{2} - s + i\sqrt{s}\Gamma_{i}(s)} \end{split}$$

• How much does this change?

Logan A. Morrison (UCSC)

Thesis Defense

Logan A. Morrison (UCSC)

Thesis Defense

▲ □ ▶ ▲ ≡ ▶ ▲ ≡ ▶ ≡ ∽ へ ○
December 8, 2021 45 / 67

Logan A. Morrison (UCSC)

Thesis Defense

4 □ ▶ 4 □ ■

• Without including non-pertubative effects, it is crucial to restrict use of chiral Lagrangian to $\sqrt{s} \lesssim 500$

- Without including non-pertubative effects, it is crucial to restrict use of chiral Lagrangian to $\sqrt{s}\lesssim 500$
- Recipe for translating models from quark-level to chiral Lagrangian is straight-forward

イロト イヨト イヨト イヨト ニヨー つくで

- Without including non-pertubative effects, it is crucial to restrict use of chiral Lagrangian to $\sqrt{s}\lesssim 500$
- Recipe for translating models from quark-level to chiral Lagrangian is straight-forward
- **Hazma**: New open-source, user-friendly python package to explore/constrain MeV DM models

イロト (四) (三) (三) (三) (0)

- Without including non-pertubative effects, it is crucial to restrict use of chiral Lagrangian to $\sqrt{s}\lesssim 500$
- Recipe for translating models from quark-level to chiral Lagrangian is straight-forward
- **Hazma**: New open-source, user-friendly python package to explore/constrain MeV DM models
- $\bullet\,$ Upcoming MeV telescopes could increase sensitivity to MeV DM models by factor ~ 100

イロト (四) (三) (三) (三) (0)

- Without including non-pertubative effects, it is crucial to restrict use of chiral Lagrangian to $\sqrt{s}\lesssim 500$
- Recipe for translating models from quark-level to chiral Lagrangian is straight-forward
- **Hazma**: New open-source, user-friendly python package to explore/constrain MeV DM models
- $\bullet\,$ Upcoming MeV telescopes could increase sensitivity to MeV DM models by factor ~ 100
- MeV telescopes could also detect Hawking radiation for $M_{\rm PBH} \sim 10^{15}-10^{18}~{\rm g}$

イロト (四) (三) (三) (三) (0)

Thanks

Thanks to everyone who has helped and encouraged me throughout Graduate School...

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 48 / 67

Happy Holidays!

Logan A. Morrison (UCSC)

Thesis Defense

イロト イ団ト イヨト イヨト ヨー つへで December 8, 2021 49 / 67

Honorable Mentions

Large-Nightmare One-Loop Charge Breaking 2HDM Asymptotic Analysis of Boltzmann Equation

Logan A. Morrison (UCSC)

Thesis Defense

Large-Nightmare Dark Matter

Stefano Profumo, Dean J. Robinson, LM: arXiv:2010.03586

Logan A. Morrison (UCSC)

Thesis Defense

Theory

- Consider an SU(N) gauge theory with a single dark (effectively massless, $m_{\tilde{q}} \ll \Lambda$) "quark"
- We take $N \gg 1$ and assume $g_{\text{dark}} \sim 1/\sqrt{N}$ (large-N limit)
- Two stable states: $\tilde{\eta}'(\bar{q}q)$ and $\tilde{\Delta}(N\tilde{q})$
- The $\tilde{\eta}'$ is very light while the $\tilde{\Delta}$ very heavy

State	Mass	Lifetime	$\mathrm{U}(1)_V$
$\begin{array}{c} \tilde{\eta}' \\ \tilde{\Delta} \end{array}$	$\sim \Lambda/\sqrt{N} \\ \sim N\Lambda$	stable stable	$0 \\ N$
$\tilde{\omega}$ \tilde{G}	$\begin{array}{c} \sim \Lambda \\ \sim {\rm few} \ \Lambda \end{array}$	$N^2/\Lambda N^2/\Lambda$	0 0

Logan A. Morrison (UCSC)

Thesis Defense

Interactions

• Interactions for the $\tilde{\eta}$ are roughly:

$$\sigma_{2\tilde{\eta}\to 2\tilde{\eta}}(s) \sim \frac{\pi^3 s^3 |\lambda_1|^2}{4\Lambda^8 N^2}, \quad \sigma_{2\tilde{\eta}\to 4\tilde{\eta}}(s) \sim \frac{\pi^3 s^7}{48\Lambda^{16} N^4} \left| 10\lambda_1^2 + \lambda_2 \right|^2$$

 $\bullet\,$ Interactions for the $\tilde{\Delta}$:

$$\sigma_{\tilde{\eta}\tilde{\eta}\to\tilde{\tilde{\Delta}}\tilde{\Delta}}(s)\sim \frac{e^{-2cN}}{64\pi N^2\Lambda^2}, \qquad \quad \sigma_{\tilde{\Delta}\tilde{\Delta}\to\tilde{\Delta}\tilde{\Delta}}(s)\sim \frac{4\pi^3}{\Lambda^2}$$

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 53 / 67

Interactions

Logan A. Morrison (UCSC)

Thesis Defense

Thermal Evolution of Dark Sector

- If a theory is thermally decoupled from the SM, it may have a different temperature
- Total entropy in dark and SM sector will be conserved
- Ratios of entropies densities are then constant:

$$\text{const} = \frac{s_d}{s_{\text{SM}}} = \frac{h_d(T_d)T_d^3}{h_{\text{SM}}(T_{\text{SM}})T_{\text{SM}}^3}$$

• We can determine dark temperature at late times if we know ratio at some early time

$$\xi(T_{\rm SM}) \equiv \frac{T_d}{T_{\rm SM}} = \left(\frac{h_{\rm SM}}{h_{\rm SM}^\infty} \frac{h_d^\infty}{h_d(\xi T_{\rm SM})}\right)^{1/3} \xi^\infty$$

• As long as dark sector is in thermal equillibrium, it becomes exponetially hot relative to SM bath

$$h(x = m/T) \sim x^3 K_3(x) \sim x^{5/2} x^{-x},$$
 $(x \to \infty)$

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 54 / 67

イロト イヨト イヨト イヨト ニヨー つくで

Thermal Evolution of Dark Sector

Logan A. Morrison (UCSC)

Thesis Defense

Cosmic Evolution

- High temperatures: dark quark-gluon plasma
- ② $T \sim \Lambda$: dark quark and gluons confine to $\tilde{\eta}'$ and $\tilde{\Delta}$
- (3) n_{Δ} initially suppress due to difficulty in forming
- $\begin{array}{ll} \textcircled{4} & \tilde{\Delta}s \text{ are frozen in via} \\ & 2\tilde{\eta}' \to \bar{\tilde{\Delta}}\tilde{\Delta} \end{array}$
- $\begin{array}{ll} \mathfrak{I} & \tilde{\eta}' \text{ annihilate via} \\ & 4\tilde{\eta}' \to 2\tilde{\eta}' \end{array}$

Logan A. Morrison (UCSC)

Thesis Defense

Experimental Handels

• Measurements from bullet cluster and shapes of halos put tight constraints on self-interaction cross section

$$\sigma_{\rm SI} \lesssim \frac{\rm barn}{\rm GeV}$$

• BBN and CMB constrain the effective number of neutrino constraints:

$$\Delta N_{\rm eff} < 0.3$$

• If the $\tilde{\eta}'$ is in equilibrium for too long, we affect $N_{\rm eff}$

$$N_{\rm eff}^{\rm CMB} \sim 3.046 + \frac{4}{7} \left(\frac{11}{4}\right)^{4/3} g_d^{\rm CMB} \xi_{\rm CMB}^4, \quad N_{\rm eff}^{\rm BBN} \sim 3 + \frac{4}{7} g_d^{\rm BBN} \xi_{\rm BBN}^4$$

Logan A. Morrison (UCSC)

December 8, 2021 56 / 67

Relic Densities

• $\tilde{\eta}'$ relic density can be approximated using entropy conservation and instantaneous freeze-out

$$r_s = \frac{h_d}{h_{\rm SM}} \xi^3 \sim \frac{N^2}{100} \xi_\infty^3, \qquad \qquad Y_{\tilde{\eta}'} \sim \frac{n_{\tilde{\eta}'}}{s_{\rm SM}} = \frac{r_s}{x^{d,f}}$$

• Putting together:

$$\Omega_{\tilde{\eta}'}h^2 \sim 0.12 \left(\frac{10}{x_{d,f}+1}\right) \left(\frac{\xi_{\infty}}{10^{-2}}\right)^3 \left(\frac{\Lambda}{20 \text{ MeV}}\right) \left(\frac{N}{10}\right)^{3/2}$$

• $\tilde{\Delta}$ relic density from direct integration of Boltzmann equation:

$$\Omega_{\tilde{\Delta}}h^2 \sim (\text{const.})N^{3/2}e^{-2(c+1)N}$$

Logan A. Morrison (UCSC)

Thesis Defense

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 58 / 67

Logan A. Morrison (UCSC)

Thesis Defense

One-Loop Charge-Breaking Minima in the Two-Higgs Doublet Model

Pedro Ferreira, Stefano Profumo, LM: arXiv:1910.08662

Logan A. Morrison (UCSC)

Thesis Defense
• Possible to show that tree-level THDM potential with softly broken \mathbb{Z}_2 yields either an EW or CB minimum, **but not both**

NOR

イロト イポト イラト イラト 二日

• Possible to show that tree-level THDM potential with softly broken \mathbb{Z}_2 yields either an EW or CB minimum, **but not both**

$$\begin{aligned} V^{(0)}(\Phi) &= m_{11}^2 |\Phi_1|^2 + m_{22}^2 |\Phi_2|^2 - m_{12}^2 \left[\Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] \\ &+ \frac{1}{2} \lambda_1 |\Phi_1|^4 + \frac{1}{2} \lambda_2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 \\ &+ \frac{1}{2} \lambda_5 \left[\left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \text{h.c.} \right] \end{aligned}$$

December 8, 2021 60 / 67

-

San

イロト イポト イヨト イヨト

• Possible to show that tree-level THDM potential with softly broken \mathbb{Z}_2 yields either an EW or CB minimum, **but not both**

$$V^{(0)}(\Phi) = m_{11}^2 |\Phi_1|^2 + m_{22}^2 |\Phi_2|^2 - m_{12}^2 \left[\Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] + \frac{1}{2} \lambda_1 |\Phi_1|^4 + \frac{1}{2} \lambda_2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \frac{1}{2} \lambda_5 \left[\left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \text{h.c.} \right]$$

$$\Phi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} c_1 + i c_2 \\ r_1 + i i_1 \end{pmatrix}, \qquad \Phi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} c_3 + i c_4 \\ r_2 + i i_2 \end{pmatrix}$$

Logan A. Morrison (UCSC)

Thesis Defense

・ロト ・ (日)ト ・ (三)ト ・ 三) ・ 三 ・ つ へ ()
December 8, 2021 60 / 67

• Possible to show that tree-level THDM potential with softly broken \mathbb{Z}_2 yields either an EW or CB minimum, but not both

$$V^{(0)}(\Phi) = m_{11}^2 |\Phi_1|^2 + m_{22}^2 |\Phi_2|^2 - m_{12}^2 \left[\Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] + \frac{1}{2} \lambda_1 |\Phi_1|^4 + \frac{1}{2} \lambda_2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \frac{1}{2} \lambda_5 \left[\left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \text{h.c.} \right]$$

EW:
$$\langle \Phi_1 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\v_1 \end{pmatrix}, \qquad \langle \Phi_2 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\v_2 \end{pmatrix}$$

CB: $\langle \Phi_1 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} \alpha\\\bar{v}_1 \end{pmatrix}, \qquad \langle \Phi_2 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\\bar{v}_2 \end{pmatrix}$

Logan A. Morrison (UCSC)

Thesis Defense

• Possible to show that tree-level THDM potential with softly broken \mathbb{Z}_2 yields either an EW or CB minimum, **but not both**

$$V^{(0)}(\Phi) = m_{11}^2 |\Phi_1|^2 + m_{22}^2 |\Phi_2|^2 - m_{12}^2 \left[\Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] + \frac{1}{2} \lambda_1 |\Phi_1|^4 + \frac{1}{2} \lambda_2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \frac{1}{2} \lambda_5 \left[\left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \text{h.c.} \right]$$

• Difference between vacuua

$$V_{\rm CB} - V_{\rm EW} = \frac{M_{H^{\pm}}^2}{2(v_1^2 + v_2^2)} \left[(v_1 \bar{v}_1 - v_2 \bar{v}_2)^2 + \alpha^2 v_1^2 \right]$$

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 60 / 67

-

San

イロト イボト イヨト イヨト

• Possible to show that tree-level THDM potential with softly broken \mathbb{Z}_2 yields either an EW or CB minimum, but not both

$$V^{(0)}(\Phi) = m_{11}^2 |\Phi_1|^2 + m_{22}^2 |\Phi_2|^2 - m_{12}^2 \left[\Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] + \frac{1}{2} \lambda_1 |\Phi_1|^4 + \frac{1}{2} \lambda_2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \frac{1}{2} \lambda_5 \left[\left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \text{h.c.} \right]$$

Difference between vacuua •

$$V_{\rm CB} - V_{\rm EW} = \frac{M_{H^{\pm}}^2}{2(v_1^2 + v_2^2)} \left[(v_1 \bar{v}_1 - v_2 \bar{v}_2)^2 + \alpha^2 v_1^2 \right]$$

• Does this hold at 1-loop?

Logan A. Morrison (UCSC)

4 E b December 8, 2021 60/67

San

One-Loop Corrections

• One-loop corrections are included using the effective potential:

$$\begin{split} V_{\text{eff}}(\bar{\phi}) &= V_{\text{tree}}(\bar{\phi}) \\ &+ \frac{\hbar}{64\pi^2} \sum_i (-1)^{2s_i} n_i \left[M_i^2(\bar{\phi}) \right]^2 \bigg[\log \bigg(\frac{M_i^2(\bar{\phi})}{\mu^2} \bigg) - c_i \bigg] \end{split}$$

December 8, 2021 61 / 67

200

(日) (四) (王) (王) (王)

One-Loop Corrections

• One-loop corrections are included using the effective potential:

$$\begin{split} V_{\text{eff}}(\bar{\phi}) &= V_{\text{tree}}(\bar{\phi}) \\ &+ \frac{\hbar}{64\pi^2} \sum_i (-1)^{2s_i} n_i \left[M_i^2(\bar{\phi}) \right]^2 \left[\log \left(\frac{M_i^2(\bar{\phi})}{\mu^2} \right) - c_i \right] \end{split}$$

• Results: there exists parameters with simultaneous CB and EW minima

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 61 / 67

200

(日) (四) (王) (王) (王)

One-Loop Corrections

• One-loop corrections are included using the effective potential:

$$\begin{aligned} V_{\text{eff}}(\bar{\phi}) &= V_{\text{tree}}(\bar{\phi}) \\ &+ \frac{\hbar}{64\pi^2} \sum_i (-1)^{2s_i} n_i \left[M_i^2(\bar{\phi}) \right]^2 \left[\log \left(\frac{M_i^2(\bar{\phi})}{\mu^2} \right) - c_i \right] \end{aligned}$$

• Results: there exists parameters with simultaneous CB and EW minima

• Tend to occur when $V_{\rm CB} \sim V_{\rm EW}$

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 61/67

イロト (日) (日) (日) (日) (日) (日)

One dimensional slices of the effective scalar potential

$$\phi(t) = (1 - t)\phi_{\rm EW} + t\phi_{\rm CB}$$

$$\phi(0) = \phi_{\rm EW}, \quad \phi(1) = \phi_{\rm CB}$$

Logan A. Morrison (UCSC)

Thesis Defense

 $V_{\text{eff}}(\phi_{CB}) < V_{\text{eff}}(\phi_{EW})$

Logan A. Morrison (UCSC)

Thesis Defense

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 0 0 0 December 8, 2021 63 / 67

Logan A. Morrison (UCSC)

Thesis Defense

イロト イ団ト イヨト イヨト ヨー のへで December 8, 2021 64 / 67

Asymptotic analysis of the Boltzmann equation for dark matter relic abundance

Hiren H. Patel, Jaryd F. Ulbricht, LM: arXiv:2009.04012

Logan A. Morrison (UCSC)

Thesis Defense

Dark Matter relic abundance determined using first moment of 1 Boltzmann equation

$$\frac{\mathrm{d}Y}{\mathrm{d}x} = -\lambda f(x) \left[Y^2 - Y_{\mathrm{eq}} \right],$$
$$\lambda f(x) = \sqrt{\frac{\pi}{45}} \frac{m_{\chi} M_{\mathrm{pl}}}{x^2} \frac{h}{\sqrt{g}} \left(1 + \frac{1}{3h} \frac{\mathrm{d}h}{\mathrm{d}x} \right) \left\langle \sigma v_{\mathrm{M} \mathrm{\omega} \mathrm{l}} \right\rangle$$

Logan A. Morrison (UCSC)

Thesis Defense

(日) (四) (王) (王) (王) December 8, 2021 66 / 67

Sar

Dark Matter relic abundance determined using first moment of Boltzmann equation

$$\frac{\mathrm{d}Y}{\mathrm{d}x} = -\lambda f(x) \left[Y^2 - Y_{\mathrm{eq}} \right],$$
$$\lambda f(x) = \sqrt{\frac{\pi}{45}} \frac{m_{\chi} M_{\mathrm{pl}}}{x^2} \frac{h}{\sqrt{g}} \left(1 + \frac{1}{3h} \frac{\mathrm{d}h}{\mathrm{d}x} \right) \langle \sigma v_{\mathrm{M} \phi \mathrm{l}} \rangle$$

Numerical solutions are time consuming/difficult (very stiff equation)

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 66 / 67

Sar

イロト イボト イヨト イヨト 三日

Dark Matter relic abundance determined using first moment of Boltzmann equation

$$\frac{\mathrm{d}Y}{\mathrm{d}x} = -\lambda f(x) \left[Y^2 - Y_{\mathrm{eq}} \right],$$
$$\lambda f(x) = \sqrt{\frac{\pi}{45}} \frac{m_{\chi} M_{\mathrm{pl}}}{x^2} \frac{h}{\sqrt{g}} \left(1 + \frac{1}{3h} \frac{\mathrm{d}h}{\mathrm{d}x} \right) \langle \sigma v_{\mathrm{M} \phi \mathrm{l}} \rangle$$

- 2 Numerical solutions are time consuming/difficult (very stiff equation)
- ③ Standard analysis of Gondolo, Gemini makes estimating errors in appoximations difficult

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 66 / 67

 Dark Matter relic abundance determined using first moment of Boltzmann equation

$$\frac{\mathrm{d}Y}{\mathrm{d}x} = -\lambda f(x) \left[Y^2 - Y_{\mathrm{eq}} \right],$$
$$\lambda f(x) = \sqrt{\frac{\pi}{45}} \frac{m_{\chi} M_{\mathrm{pl}}}{x^2} \frac{h}{\sqrt{g}} \left(1 + \frac{1}{3h} \frac{\mathrm{d}h}{\mathrm{d}x} \right) \langle \sigma v_{\mathrm{M} \phi \mathrm{l}} \rangle$$

- Numerical solutions are time consuming/difficult (very stiff equation)
- ③ Standard analysis of Gondolo, Gemini makes estimating errors in appoximations difficult
- Asymptotic analysis gives method for arbitrary accurate results with error estimates

Logan A. Morrison (UCSC)

Thesis Defense

December 8, 2021 66 / 67

x

Logan A. Morrison (UCSC)

Thesis Defense

 \equiv 200 December 8, 2021 67 / 67

Logan A. Morrison (UCSC)

Thesis Defense