Effective Potential in a Scalar Field Theory

Generic Form

To derive the effective potential, we start with a couple definitions. We define the generating function for greens functions as: Z[J]=Dϕexp(iS[ϕ]+d4xJ(x)ϕ(x)) This functional generates all possible Feynman diagrams. Not all of these diagrams will be connected. To generate the connected diagrams, we introduce the generating functional for connected diagrams: W[J]=iln(Z[J]) Even the connected diagrams are not the most fundamental. The most fundamental are the one-particle irreducible (1PI) diagrams. These are generated by a functional which is the Legandre transform of W[J]: Γ[ϕcl]=W[J]d4xJ(x)ϕcl(x) where ϕcl(x)=δW[J]δϕ(x) The effective potential will be given by Γ[ϕcl]=(VT)Veff(ϕcl) where VT is the volume of space-time. Let’s illustrate how to compute the effective action using the background field method. We begin by expanding ϕ about the classical field, taking ϕcl to be independent of space-time. That is,

ϕ(x)=ϕcl+η(x)

where η(x) is a field representing the high momentum degrees of freedom of ϕ(x). We now expand the action about ϕcl:

S[ϕ(x)]=S[ϕcl]+n=11n!d4x1d4xnδnS[ϕ(x)]δϕ(x1)δϕ(xn)=S[ϕcl]+d4yδS[ϕ(x)]δϕ(y)η(y)+12d4yd4zδ2Sδϕ(y)δϕ(z)η(y)η(z)+

Thus,

S[ϕ]+d4yJ(y)(ϕ(y)+ϕcl)=S[ϕcl]+d4yJ(y)ϕcl+d4yη(y)(δS[ϕ]δϕ(y)+J(y)) +d4yd4zη(y)δ2S[ϕ]δϕ(y)δϕ(z)η(z)+

where all the functional derivatives are evaluated at ϕcl. Note that the equations of motion, which ϕcl satisfies, are

$$ \begin{align} \dfrac{\delta S[\phi]}{\delta\phi(y)}\bigg{|}{\phi=\phi{\text{cl}}} + J(y) = 0 \end{align}$$

Therefore, the term linear term in η of the expansion of the action is zero. Now, the functional Z[J] to quadratic order in η is:

Z[J]=Dϕexp(iS[ϕ]+id4yJ(y)ϕ(y))=exp(iS[ϕcl]+id4yJ(y)ϕcl))Dηexp(i2d4yd4zη(y)δ2S[ϕ]δϕ(y)δϕ(z)η(z)+)

We can explicitly evaluate the functional integral by wick rotating: tiτ. Then, Dηexp(12d4yEd4zEη(y)δ2SE[ϕ]δϕ(y)δϕ(z)η(z))(detδ2S[ϕ]δϕ(y)δϕ(z))1/2

Now, using

(detδ2S[ϕ]δϕ(y)δϕ(z))1/2=exp(12lndetδ2S[ϕ]δϕ(y)δϕ(z))

And thus,

Z[J]=exp(iS[ϕcl]+id4yJ(y)ϕcl12lndetδ2S[ϕ]δϕ(y)δϕ(z))=eiW[J]

Therefore,

W[J]=S[ϕcl]+d4yJ(y)ϕcl+i2lndetδ2S[ϕ]δϕ(y)δϕ(z)

Now, the effective action is given by

Γ[ϕcl]=W[J]d4yJ(y)ϕcl =S[ϕcl]+d4yJ(y)ϕcl+i2lndetδ2S[ϕ]δϕ(y)δϕ(z)d4yJ(y)ϕcl =S[ϕcl]+i2lndetδ2S[ϕ]δϕ(y)δϕ(z)

Specific Example: Linear Sigma Model

Effective Potential in the Linear Sigma Model

Let’s examine this process of computing the effective action for a simple example. Consider the linear sigma model:

L=12(μΦ)(μΦ)+12μ2(ΦΦ)λ4(ΦΦ)2

where Φ is a vector containing N scalar fields. We now expand these fields about the classical fields:

Φ=Φcl+η

where Φcl are space-time independent fields. Now, we would like to take the second functional derivative with respect to the fields of the action. Let’s first look at the derivative term:

δδΦi(y)(μΦk(x))(μΦk(x))=limϵ0μ(Φk(x)+ϵδ4(xy))μ(Φk(x)+ϵδ4(xy))μΦk(x)μΦk(x)ϵ=limϵ02μΦk(x)ϵμδ4(xy)δik+O(ϵ2)ϵ=2μΦk(x)μδ4(xy)δik

Taking a second functional derivative, we find δ2δΦi(y)δΦj(z)(μΦk(x))(μΦk(x))=2μδ4(xz)μδ4(xy)δij=2δ4(xz)2δ4(xy)δij+total derivative Note that the derivative is with respect to x. The μ term gives us δ2δΦi(y)δΦj(z)ΦkΦk=2δ4(xz)δ4(xy)δij The λ term gives us δ2δΦi(y)δΦj(z)ΦmΦmΦnΦn=2δδΦj(z)(δimΦmΦnΦn+δinΦnΦnΦn)δ4(xy)=2(δijΦnΦn+δijΦnΦn)δ4(xy)δ4(xz)+4(ΦiΦj+ΦiΦj)δ4(xy)δ4(xz)=4δijΦnΦnδ4(xy)δ4(xz)+8ΦiΦjδ4(xy)δ4(xz)

Thus,

δ2SδΦi(y)δΦj(z)|Φi=Φcli=δ4(xz)2δ4(xy)δij+μ2δ4(xy)δ4(xz)δijλδijΦnΦnδ4(xy)δ4(xz)2λΦcliΦcljδ4(xy)δ4(xz)

To make things easier, let’s rotate Φcli such that

Φcli(0,0,,0,Φcl)

Then,

ΦnΦn=Φcl2andΦcliΦclj=Φcl2δiNδjN

Denoting δ4(xy) as δxy, we find that

δ2SδΦi(y)δΦj(z)|Φ=Φcl=δxz2δxyδij+μ2δxyδxzδijλδijΦcl2δxyδxz2Φcl2δiNδjNδxyδxz

Now,

Dηexp(i2d4yd4zηi(y)δ2SδΦi(y)δΦj(z)|Φ=Φclηj(z)) =Dηexp(i2d4yd4zη1(y)δxz(2+λΦcl2μ2)δxyη1(z)+i2d4yd4zηN1(y)δxz(2+λΦcl2μ2)δxyηN1(z)i2d4yd4zηN(y)δxz(2+3λΦcl2μ2)δxyηN(z))

Each of these terms in going to produce a term proportional to the inverse square root of the determinant of the operator sandwiched between the η’s:

Dηexp(i2d4yd4zηi(y)M(y,z)ηj(z))(detM(y,z))1/2

Each of these operators has a Klein-Gordon operator: 2+m2. Using

(detM(y,z))1/2=exp(12logdetM(y,z))

and

logdetM(y,z)=trlogM(y,z)

we have

Dηexp(i2d4yd4zηi(y)δ2SδΦi(y)δΦj(z)|Φ=Φclηj(z))=exp(12trlog((2+λΦcl2μ2)N1(2+3λΦcl2μ2)))

Therefore, our effective action is

Γ[Φcl]=S[Φcl]+i2trlog((2+λΦcl2μ2)N1(2+3λΦcl2μ2))

To evaluate these determinants, we can use

trlog(2+m2)=d4xxlog(2+m2)x=d4xd4k(2π)4d4p(2π)4xpplog(2+m2)kkx=d4xd4k(2π)4d4p(2π)4xp(2π)4δ4(kp)log(k2+m2)kx=d4xd4p(2π)4|xp|2log(p2+m2) =d4xd4p(2π)4log(p2+m2) =VTd4p(2π)4log(p2+m2)

This last integral can be evaluated using

log(p2+m2)=limα0α1(p2+m2)α

Using this, moving to Euclidean space and switching our integration dimension to d, we find

ddp(2π)dlog(p2+m2)=ilimα0αddpE(2π)d1(pE2+m2)α=ilimα0α(1)α(4π)d/2Γ(αd/2)Γ(α)(1m2)αd/2

Using

Γ(α)=1αγ+O(α)

we find

α1Γ(α)=1

Thus,

ddp(2π)dlog(p2+m2)=iΓ(d/2)(4π)d/2(m2)d/2

Now, we have found that,

Γ[Φcl]=S[Φcl]+VT2Γ(d/2)(4π)d/2((N1)(λΦcl2μ2)d/2+(3λΦcl2μ2)d/2)

Using

S[Φcl]=d4x12(μΦcl)(μΦcl)+12μ2(ΦclΦcl)λ4(ΦclΦcl)2=VT(12μ2(ΦclΦcl)λ4(ΦclΦcl)2)

Therefore, the effective potential is

Veff(Φcl)=12μ2Φcl2+λ4Φcl412Γ(d/2)(4π)d/2((N1)(λΦcl2μ2)d/2+(3λΦcl2μ2)d/2)

One will notice that this expression is divergent. The reason being that we haven’t yet renormalized the effective potential. In the next section, we will take care of these divergences in detail.

Renormalization of Linear Sigma Model

Before we can proceed, we need to renormalize the linear sigma model. The renormalizable parameters are Za, the wave function renormalizations, μ, the masses and λ, the quartic couplings. We thus augment the Lagrangian by the following counterterms:

L=12(μΦ)(μΦ)+12μ2(ΦΦ)λ4(ΦΦ)2+12δZ(μΦ)(μΦ)12δμμ2(ΦΦ)δλ4(ΦΦ)2

The Feynmann rules for the vertices and there corresponding counter terms are given by:

Vertex Rule
2-pt renorm_linear_sigma3
2-pt CT renorm_linear_sigma4
4-pt renorm_linear_sigma1
4-pt CT renorm_linear_sigma2

First, we will compute the mass renormalization graph. This graph is:

renorm_linear_sigma5

Suppose that Φb is running in the loop. Then, the value of this graph in d=4ϵ dimensions is

iΣ=12(2iλ)(δabδcc+δacδbc+δacδbc)ddk(2π)dip2+μ2

This is easily evaluated to

iΣ=λδab(N+2)(1)i(4π)d/2Γ(1d2)Γ(1)(1μ2)1d2

In d=4ϵ dimensions, the mass dimension of the fields is

[Φ]=m(d2)/2

This means that

md=[λΦ4]=m2d4[λ][λ]=m4d=mϵ

Let’s keep λ dimensionless. To do this, we define

λ=(ξ2)ϵ/2λ~

where ξ has dimensions of mass. Additionally, recall that the Gamma function near x=n is

Γ(x)=(1)nn!(1x+n+1++1n+O(x+n))

This means that

Γ(ϵ21)=(2ϵ+1γ+O(ϵ))=2ϵ(1+2ϵlog(e1γ)+O(ϵ))

Now, we have that, to order ϵ,

Σ=λ~δab(N+2)μ28ϵπ2(1+ϵ2log(4π))(1ϵ2log(μ2))(1+ϵ2log(e1γ))(1+ϵ2log(ξ2))

And thus,

Σ=λ~δab(N+2)μ216ϵπ22ϵ(1+ϵ2log(4πξ2e1γμ2))

The divergent piece is

Σ=λ~μ2δab(N+2)116ϵπ22ϵ

Now, let’s evaluate the other divergences. The source of the rest of the divergences are from the following graphs:

renorm_linear_sigma6

Let’s start by evaluating graph a. To avoid clutter, define Cabcd=δabδcd+δacδbd+δadδcb. Then, the four-pt graph is:

iΓa=12e,f(2iλCabef)(2iλCefcd)ddk(2π)di(ps+k)2me2ik2mf2=2λ2e,fCabefCefcdddk(2π)d1[(ps+k)2me2][k2mf2]

To evaluate this integral, we introduce Feynman parameters of the form:

1AB=01dx01dyδ(1xy)(Ax+By)2=01dx1(B+(AB)x)2 Let

A=(ps+k)2me2=k2+2psk+ps2me2B=k2mf2

Then,

B+(AB)x=k2mf2+(k2+2psk+ps2me2k2+mf2)x=[k+xpsk]2+x(1x)ps2mf2+(mf2me2)x

Define

a=k+xpskandΔ=x(1x)ps2+mf2(mf2me2)x

Then, switching integration variables to a,

iΓa=2λ2e,fCabefCefcd01dxddk(2π)d1(a2Δ)2

This can quickly be integrated to

iΓa=2λ2e,fCabefCefcd01dx(1)2i(4π)d/2Γ(2d2)Γ(2)(1Δ)2d/2

Using d=4ϵ, this becomes

iΓa=2λ2e,fCabefCefcd01dx2i16ϵπ2(1+ϵ2log(4π))(1+ϵ2log(eγ))(1ϵ2log(Δ))

Using

λ=λ~(ξ2)ϵϵ/2

This becomes

iΓa=2λ2e,fCabefCefcd01dx2i16ϵπ2(1+ϵ2log(4πξ4eγΔ))

Using me=mf=μ, we find

iΓa=2λ2((N+4)δabδcd+2δacδbd+2δadδbc)01dx2i16ϵπ2(1+ϵ2log(4πξ4eγμ2x(1x)ps2))

The divergence goes like

iΓa=2λ2((N+4)δabδcd+2δacδbd+2δadδbc)2i16ϵπ2+finite

This is exactly what we would get if we did the other diagrams, but with the indices swapped. Adding everything up, we find

Γ=2λ2(δabδcd+δacδbd+δadδbc)(N+8)116π22ϵ+finite

We can now determine δμ,δZ and δλ. For the self-energy graph, we require that, at p2=μ2, the sum of 1PI diagrams be zero. Diagramatically, this looks like:

renorm_linear_sigma7

where the one-particle-irreducible diagrams. The sum in is given by

ip2+μ2=1Z(ip2+μ02+ip2+μ02iΣip2+μ02+ip2+μ02iΣip2μ02iΣip2+μ02+)=1Zip2+μ0211+Σp2+μ02=1Zip2+μ02+Σ

where Z=1+δZ and μ02=(1+δμ)μR2. The denominator is

Z(p2μ02+Σ)=p2+μR2δZp2+μR2(δZ+δμ)+Σ(p2)

Our renormalization condition will require that this quantity is equal to p2μR2 at p2=μR2. That is, the pole is at μR2. This requires that

0=λ~RμR2(N+2)116ϵπ22ϵ+μR2δμ

Thus, δZ=0 and

δμ=λ~μ2(N+2)116ϵπ22ϵ

We also require the amplitude of

iM(ΦaΦbΦcΦd)=2iλ(δabδcd+δacδbd+δadδcb)

at p2=4m2.

renorm_linear_sigma8

where

renorm_linear_sigma9

Thus,

0=2iδλ(δabδcd+δacδbd+δadδcb)+2iλ2(δabδcd+δacδbd+δadδbc)(N+8)116π22ϵ

or

δλ=λ2(N+8)116π22ϵ

Let’s now return to the effective potential. The divergent part came from

12Γ(d/2)(4π)d/2((N1)(λΦcl2μ2)d/2+(3λΦcl2μ2)d/2)

Letting d=4ϵ, we have that

(λΦcl2μ2)d/2=(λΦcl2μ2)2(1ϵ2log(λΦcl2μ2))(3λΦcl2μ2)d/2=(3λΦcl2μ2)2(1ϵ2log(3λΦcl2μ2))Γ(d/2)=1ϵ(1ϵ2(γ32))

Now,

(N1)(λΦcl2μ2)d/2+(3λΦcl2μ2)d/2=(N1)(λ2Φcl42λμ2Φcl2+μ4)+(9λ2Φcl46λμ2Φcl2+μ4)+O(ϵ)=(N+8)λ2Φcl42(N+2)λμ2Φcl2+Nμ4+O(ϵ)

Therefore, the divergent part of the effective potential, before adding in the counterterms, is

Veff=132ϵπ2((N+8)λ2Φcl42(N+2)λμ2Φcl2+Nμ4)+

To add in the counterterms, we let

μ2μ2+λμ2(N+2)116ϵπ22ϵλλ+λ2(N+8)116π22ϵ

We only make these changes to terms of order

O(ϵ0). Thus,

12μ2Φcl2+λ4Φcl412μ2Φcl2+λ4Φcl4λμ2(N+2)116ϵπ21ϵΦcl2+λ2(N+8)132π21ϵΦcl4

Miraculously, we can see that the infinities attached to Φcl2 and Φcl4 cancel! Our potential is now

Veff=12μ2Φcl2+λ4Φcl4+14116π2[(N1)(λΦcl2μ2)2log(λΦcl2μ2)+(3λΦcl2μ2)2log(3λΦcl2μ2)+γ32log(4π)]

We can modify our subtraction scheme in order to get rid of the annoying constants and make the log dimensionless. Doing so, we obtain

Veff=12μ2Φcl2+λ4Φcl4+14116π2[(N1)(λΦcl2μ2)2log(λΦcl2μ2ξ2)+(3λΦcl2μ2)2log(3λΦcl2μ2ξ2)]

Where ξ is a parameter with dimensions of mass.